University of Lincoln
A Model to Support Collective Reasoning: Formalization, Analysis and Computational Assessment
Ganzer, Jordi (King's College London) | Criado, Natalia (King's College London) | Lopez-Sanchez, Maite (University of Barcelona) | Parsons, Simon (University of Lincoln) | Rodriguez-Aguilar, Juan A. (Institut d'Investigació en Intel·ligència Artificial (IIIA-CSIC))
In this paper we propose a new model to represent human debates and methods to obtain collective conclusions from them. This model overcomes two drawbacks of existing approaches. First, our model does not assume that participants agree on the structure of the debate. It does this by allowing participants to express their opinion about all aspects of the debate. Second, our model does not assume that participants' opinions are rational, an assumption that significantly limits current approaches. Instead, we define a weaker notion of rationality that characterises coherent opinions, and we consider different scenarios based on the coherence of individual opinions and the level of consensus. We provide a formal analysis of different opinion aggregation functions that compute a collective decision based on the individual opinions and the debate structure. In particular, we demonstrate that aggregated opinions can be coherent even if there is a lack of consensus and individual opinions are not coherent. We conclude with an empirical evaluation demonstrating that collective opinions can be computed efficiently for real-sized debates.
Sequence-to-Point Learning With Neural Networks for Non-Intrusive Load Monitoring
Zhang, Chaoyun (University of Edinburgh) | Zhong, Mingjun (University of Lincoln) | Wang, Zongzuo (University of Edinburgh) | Goddard, Nigel (University of Edinburgh) | Sutton, Charles (University of Edinburgh)
Energy disaggregation (a.k.a nonintrusive load monitoring, NILM), a single-channel blind source separation problem, aims to decompose the mains which records the whole house electricity consumption into appliance-wise readings. This problem is difficult because it is inherently unidentifiable. Recent approaches have shown that the identifiability problem could be reduced by introducing domain knowledge into the model. Deep neural networks have been shown to be a promising approach for these problems, but sliding windows are necessary to handle the long sequences which arise in signal processing problems, which raises issues about how to combine predictions from different sliding windows. In this paper, we propose sequence-to-point learning, where the input is a window of the mains and the output is a single point of the target appliance. We use convolutional neural networks to train the model. Interestingly, we systematically show that the convolutional neural networks can inherently learn the signatures of the target appliances, which are automatically added into the model to reduce the identifiability problem. We applied the proposed neural network approaches to real-world household energy data, and show that the methods achieve state-of-the-art performance, improving two standard error measures by 84% and 92%.
Toward Supervised Reinforcement Learning with Partial States for Social HRI
Senft, Emmanuel (Plymouth University) | Lemaignan, Séverin (Plymouth University) | Baxter, Paul (University of Lincoln) | Belpaeme, Tony (Plymouth University)
Social interacting is a complex task for which machine learning holds particular promise. However, as no sufficiently accurate simulator of human interactions exists today, the learning of social interaction strategies has to happen online in the real world. Actions executed by the robot impact on humans, and as such have to be carefully selected, making it impossible to rely on random exploration. Additionally, no clear reward function exists for social interactions. This implies that traditional approaches used for Reinforcement Learning cannot be directly applied for learning how to interact with the social world. As such we argue that robots will profit from human expertise and guidance to learn social interactions. However, as the quantity of input a human can provide is limited, new methods have to be designed to use human input more efficiently. In this paper we describe a setup in which we combine a framework called Supervised Progressively Autonomous Robot Competencies (SPARC), which allows safer online learning with Reinforcement Learning, with the use of partial states rather than full states to accelerate generalisation and obtain a usable action policy more quickly.
Policy Search with High-Dimensional Context Variables
Tangkaratt, Voot (The University of Tokyo) | Hoof, Herke van (McGill University) | Parisi, Simone (Technical University of Darmstadt) | Neumann, Gerhard (University of Lincoln) | Peters, Jan (Max Planck Institute for Intelligent Systems) | Sugiyama, Masashi (The University of Tokyo)
Direct contextual policy search methods learn to improve policy parameters and simultaneously generalize these parameters to different context or task variables. However, learning from high-dimensional context variables, such as camera images, is still a prominent problem in many real-world tasks. A naive application of unsupervised dimensionality reduction methods to the context variables, such as principal component analysis, is insufficient as task-relevant input may be ignored. In this paper, we propose a contextual policy search method in the model-based relative entropy stochastic search framework with integrated dimensionality reduction. We learn a model of the reward that is locally quadratic in both the policy parameters and the context variables. Furthermore, we perform supervised linear dimensionality reduction on the context variables by nuclear norm regularization. The experimental results show that the proposed method outperforms naive dimensionality reduction via principal component analysis and a state-of-the-art contextual policy search method.
Robot Control Based on Qualitative Representation of Human Trajectories
Bellotto, Nicola (University of Lincoln)
A major challenge for future social robots is the high-level interpretation of human motion, and the consequent generation of appropriate robot actions. This paper describes some fundamental steps towards the real-time implementation of a system that allows a mobile robot to transform quantitative information about human trajectories (i.e. coordinates and speed) into qualitative concepts, and from these to generate appropriate control commands. The problem is formulated using a simple version of qualitative trajectory calculus, then solved using an inference engine based on fuzzy temporal logic and situation graph trees. Preliminary results are discussed and future directions of the current research are drawn.