Goto

Collaborating Authors

 University of Georgia


On Markov Games Played by Bayesian and Boundedly-Rational Players

AAAI Conferences

We present a new game-theoretic framework in which Bayesian players with bounded rationality engage in a Markov game and each has private but incomplete information regarding other players' types. Instead of utilizing Harsanyi's abstract types and a common prior, we construct intentional player types whose structure is explicit and induces a {\em finite-level} belief hierarchy. We characterize an equilibrium in this game and establish the conditions for existence of the equilibrium. The computation of finding such equilibria is formalized as a constraint satisfaction problem and its effectiveness is demonstrated on two cooperative domains.


Extreme Gradient Boosting and Behavioral Biometrics

AAAI Conferences

As insider hacks become more prevalent it is becoming more useful to identify valid users from the inside of a system rather than from the usual external entry points where exploits are used to gain entry. One of the main goals of this study was to ascertain how well Gradient Boosting could be used for prediction or, in this case, classification or identification of a specific user through the learning of HCI-based behavioral biometrics. If applicable, this procedure could be used to verify users after they have gained entry into a protected system using data that is as human-centric as other biometrics, but less invasive. For this study an Extreme Gradient Boosting algorithm was used for training and testing on a dataset containing keystroke dynamics information. This specific algorithm was chosen because the majority of current research utilizes mainstream methods such as KNN and SVM and the hypothesis of this study was centered on the potential applicability of ensemble related decision or model trees. The final predictive model produced an accuracy of 0.941 with a Kappa value of 0.942 demonstrating that HCI-based behavioral biometrics in the form of keystroke dynamics can be used to identify the users of a system.


Decision Sum-Product-Max Networks

AAAI Conferences

Sum-Product Networks (SPNs) were recently proposed as a new class of probabilistic graphical models that guarantee tractable inference, even on models with high-treewidth. In this paper, we propose a new extension to SPNs, called Decision Sum-Product-Max Networks (Decision-SPMNs), that makes SPNs suitable for discrete multi-stage decision problems. We present an algorithm that solves Decision-SPMNs in a time that is linear in the size of the network. We also present algorithms to learn the parameters of the network from data.


Bayesian Markov Games with Explicit Finite-Level Types

AAAI Conferences

In impromptu or ad hoc settings, participating players are precluded from precoordination. Subsequently, each player's own model is private and includes some uncertainty about the others' types or behaviors. Harsanyi's formulation of a Bayesian game lays emphasis on this uncertainty while the players each play exactly one turn. We propose a new game-theoretic framework where Bayesian players engage in a Markov game and each has private but imperfect information regarding other players' types. Consequently, we construct player types whose structure is explicit and includes a finite level belief hierarchy instead of utilizing Harsanyi's abstract types and a common prior distribution. We formalize this new framework and demonstrate its effectiveness on two standard ad hoc teamwork domains involving two or more ad hoc players.


Bayesian Markov Games with Explicit Finite-Level Types

AAAI Conferences

We present a new game-theoretic framework where Bayesian players engage in a Markov game and each has private but imperfect information regarding other players' types. Instead of utilizing Harsanyi's abstract types and a common prior distribution, we construct player types whose structure is explicit and induces a finite level belief hierarchy. We characterize equilibria in this game and formalize the computation of finding such equilibria as a constraint satisfaction problem. The effectiveness of the new framework is demonstrated on two ad hoc team work domains.


A Solution Alternative to Achieve Parcel Connectivity in the Dynamic Reserve Design Problem

AAAI Conferences

The DNR is able to purchase lands and engage in conservation easements, but there is considerable uncertainty (for the Conservation reserve design is the problem of selecting reasons enumerated above) about which lands to target, and parcels of land such that the assembled set maximizes when. Furthermore, for any parcel that is protected through some criterion pertaining to the conservation of species or purchase or easement, DNR encumbers a responsibility to natural communities (Williams, ReVelle, and Levin 2005).


Decision Making in Complex Multiagent Contexts: A Tale of Two Frameworks

AI Magazine

Decision making is a key feature of autonomous systems. The physical context often includes other interacting autonomous systems, typically called agents. In this article, I focus on decision making in a multiagent context with partial information about the problem. I put the two frameworks, decentralized partially observable Markov decision process (Dec-POMDP) and the interactive partially observable Markov decision process (I-POMDP), in context and review the foundational algorithms for these frameworks, while briefly discussing the advances in their specializations.


Decision Making in Complex Multiagent Contexts: A Tale of Two Frameworks

AI Magazine

Decision making is a key feature of autonomous systems. It involves choosing optimally between different lines of action in various information contexts that range from perfectly knowing all aspects of the decision problem to having just partial knowledge about it. The physical context often includes other interacting autonomous systems, typically called agents. In this article, I focus on decision making in a multiagent context with partial information about the problem. Relevant research in this complex but realistic setting has converged around two complementary, general frameworks and also introduced myriad specializations on its way. I put the two frameworks, decentralized partially observable Markov decision process (Dec-POMDP) and the interactive partially observable Markov decision process (I-POMDP), in context and review the foundational algorithms for these frameworks, while briefly discussing the advances in their specializations. I conclude by examining the avenues that research pertaining to these frameworks is pursuing.


Improved Convergence of Iterative Ontology Alignment using Block-Coordinate Descent

AAAI Conferences

A wealth of ontologies, many of which overlap in their scope, has made aligning ontologies an important problem for the semantic Web. Consequently, several algorithms now exist for automatically aligning ontologies, with mixed success in their performances. Crucial challenges for these algorithms involve scaling to large ontologies, and as applications of ontology alignment evolve, performing the alignment in a reasonable amount of time without compromising on the quality of the alignment. A class of alignment algorithms is iterative and often consumes more time than others while delivering solutions of high quality. We present a novel and general approach for speeding up the multivariable optimization process utilized by these algorithms. Specifically, we use the technique of block-coordinate descent in order to possibly improve the speed of convergence of the iterative alignment techniques. We integrate this approach into three well-known alignment systems and show that the enhanced systems generate similar or improved alignments in significantly less time on a comprehensive testbed of ontology pairs. This represents an important step toward making alignment techniques computationally more feasible.


Reports of the AAAI 2011 Conference Workshops

AI Magazine

The AAAI-11 workshop program was held Sunday and Monday, August 7–18, 2011, at the Hyatt Regency San Francisco in San Francisco, California USA. The AAAI-11 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were Activity Context Representation: Techniques and Languages; Analyzing Microtext; Applied Adversarial Reasoning and Risk Modeling; Artificial Intelligence and Smarter Living: The Conquest of Complexity; AI for Data Center Management and Cloud Computing; Automated Action Planning for Autonomous Mobile Robots; Computational Models of Natural Argument; Generalized Planning; Human Computation; Human-Robot Interaction in Elder Care; Interactive Decision Theory and Game Theory; Language-Action Tools for Cognitive Artificial Agents: Integrating Vision, Action and Language; Lifelong Learning; Plan, Activity, and Intent Recognition; and Scalable Integration of Analytics and Visualization. This article presents short summaries of those events.