Goto

Collaborating Authors

University of Fribourg


Geographic Differential Privacy for Mobile Crowd Coverage Maximization

AAAI Conferences

For real-world mobile applications such as location-based advertising and spatial crowdsourcing, a key to success is targeting mobile users that can maximally cover certain locations in a future period. To find an optimal group of users, existing methods often require information about users' mobility history, which may cause privacy breaches. In this paper, we propose a method to maximize mobile crowd's future location coverage under a guaranteed location privacy protection scheme. In our approach, users only need to upload one of their frequently visited locations, and more importantly, the uploaded location is obfuscated using a geographic differential privacy policy. We propose both analytic and practical solutions to this problem. Experiments on real user mobility datasets show that our method significantly outperforms the state-of-the-art geographic differential privacy methods by achieving a higher coverage under the same level of privacy protection.


Scaling-Up the Crowd: Micro-Task Pricing Schemes for Worker Retention and Latency Improvement

AAAI Conferences

Retaining workers on micro-task crowdsourcing platforms is essential in order to guarantee the timely completion of batches of Human Intelligence Tasks (HITs). Worker retention is also a necessary condition for the introduction of SLAs on crowdsourcing platforms. In this paper, we introduce novel pricing schemes aimed at improving the retention rate of workers working on long batches of similar tasks. We show how increasing or decreasing the monetary reward over time influences the number of tasks a worker is willing to complete in a batch, as well as how it influences the overall latency. We compare our new pricing schemes against traditional pricing methods (e.g., constant reward for all the HITs in a batch) and empirically show how certain schemes effectively function as an incentive for workers to keep working longer on a given batch of HITs. Our experimental results show that the best pricing scheme in terms of worker retention is based on punctual bonuses paid whenever the workers reach predefined milestones.