University of Dundee
Report on the Eighth International Conference on Computational Creativity
Pease, Alison (University of Dundee) | Jordanous, Anna (University of Kent)
'17) was hosted at the Georgia Institute This was the third time the conference had been hosted in North America (Mexico City, ICCC'11; Park City, ICCC'15), and the Georgia Institute of Technology and local hosts provided extremely comfortable accommodation for everyone, furthering the traditional friendly and welcoming atmosphere of the conference. Thirty-four full papers were presented in a single track over three and a half days, as oral presentations, or posters and short talks, depending on the nature of the contribution. The papers were grouped by theme. A foundations session opened the conference with talks on application domains in CC, building a CC system, and teaching CC. A language session followed, looking at linguistic creativity in narrative and poetry.
Towards Artificial Argumentation
Atkinson, Katie (University of Liverpool) | Baroni, Pietro (Università degli Studi di Brescia) | Giacomin, Massimiliano (Università degli Studi di Brescia) | Hunter, Anthony (University College London) | Prakken, Henry (Utrecht University) | Reed, Chris (University of Dundee) | Simari, Guillermo (Universidad Nacional del Sur) | Thimm, Matthias (Universität Koblenz-Landau) | Villata, Serena (Université Côte d'Azur)
Towards Artificial Argumentation
Atkinson, Katie (University of Liverpool) | Baroni, Pietro (Università degli Studi di Brescia) | Giacomin, Massimiliano (Università degli Studi di Brescia) | Hunter, Anthony (University College London) | Prakken, Henry (Utrecht University) | Reed, Chris (University of Dundee) | Simari, Guillermo (Universidad Nacional del Sur) | Thimm, Matthias (Universität Koblenz-Landau) | Villata, Serena (Université Côte d'Azur)
The field of computational models of argument is emerging as an important aspect of artificial intelligence research. The reason for this is based on the recognition that if we are to develop robust intelligent systems, then it is imperative that they can handle incomplete and inconsistent information in a way that somehow emulates the way humans tackle such a complex task. And one of the key ways that humans do this is to use argumentation either internally, by evaluating arguments and counterarguments‚ or externally, by for instance entering into a discussion or debate where arguments are exchanged. As we report in this review, recent developments in the field are leading to technology for artificial argumentation, in the legal, medical, and e-government domains, and interesting tools for argument mining, for debating technologies, and for argumentation solvers are emerging.
A Multi-Task Deep Network for Person Re-Identification
Chen, Weihua (Institute of Automation, Chinese Academy of Sciences) | Chen, Xiaotang ( Institute of Automation, Chinese Academy of Sciences ) | Zhang, Jianguo (University of Dundee) | Huang, Kaiqi ( Institute of Automation, Chinese Academy of Sciences )
Person re-identification (ReID) focuses on identifying people across different scenes in video surveillance, which is usually formulated as a binary classification task or a ranking task in current person ReID approaches. In this paper, we take both tasks into account and propose a multi-task deep network (MTDnet) that makes use of their own advantages and jointly optimize the two tasks simultaneously for person ReID. To the best of our knowledge, we are the first to integrate both tasks in one network to solve the person ReID. We show that our proposed architecture significantly boosts the performance. Furthermore, deep architecture in general requires a sufficient dataset for training, which is usually not met in person ReID. To cope with this situation, we further extend the MTDnet and propose a cross-domain architecture that is capable of using an auxiliary set to assist training on small target sets. In the experiments, our approach outperforms most of existing person ReID algorithms on representative datasets including CUHK03, CUHK01, VIPeR, iLIDS and PRID2011, which clearly demonstrates the effectiveness of the proposed approach.
Reports of the AAAI 2011 Conference Workshops
Agmon, Noa (University of Texas at Austin) | Agrawal, Vikas (Infosys Labs) | Aha, David W. (Naval Research Laboratory) | Aloimonos, Yiannis (University of Maryland, College Park) | Buckley, Donagh (EMC) | Doshi, Prashant (University of Georgia) | Geib, Christopher (University of Edinburgh) | Grasso, Floriana (University of Liverpool) | Green, Nancy (University of North Carolina Greensboro) | Johnston, Benjamin (University of Technology, Sydney) | Kaliski, Burt (VeriSign, Inc.) | Kiekintveld, Christopher (University of Texas at El Paso) | Law, Edith (Carnegie Mellon University) | Lieberman, Henry (Massachusetts Institute of Technology) | Mengshoel, Ole J. (Carnegie Mellon University) | Metzler, Ted (Oklahoma City University) | Modayil, Joseph (University of Alberta) | Oard, Douglas W. (University of Maryland, College Park) | Onder, Nilufer (Michigan Technological University) | O'Sullivan, Barry (University College Cork) | Pastra, Katerina (Cognitive Systems Research Insitute) | Precup, Doina (McGill University) | Ramachandran, Sowmya (Stottler Henke Associates, Inc.) | Reed, Chris (University of Dundee) | Sariel-Talay, Sanem (Istanbul Technical University) | Selker, Ted (Carnegie Mellon University) | Shastri, Lokendra (Infosys Technologies Ltd.) | Smith, Stephen F. (Carnegie Mellon University) | Singh, Satinder (University of Michigan at Ann Arbor) | Srivastava, Siddharth (University of Wisconsin, Madison) | Sukthankar, Gita (University of Central Florida) | Uthus, David C. (Naval Research Laboratory) | Williams, Mary-Anne (University of Technology, Sydney)
The AAAI-11 workshop program was held Sunday and Monday, August 7–18, 2011, at the Hyatt Regency San Francisco in San Francisco, California USA. The AAAI-11 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were Activity Context Representation: Techniques and Languages; Analyzing Microtext; Applied Adversarial Reasoning and Risk Modeling; Artificial Intelligence and Smarter Living: The Conquest of Complexity; AI for Data Center Management and Cloud Computing; Automated Action Planning for Autonomous Mobile Robots; Computational Models of Natural Argument; Generalized Planning; Human Computation; Human-Robot Interaction in Elder Care; Interactive Decision Theory and Game Theory; Language-Action Tools for Cognitive Artificial Agents: Integrating Vision, Action and Language; Lifelong Learning; Plan, Activity, and Intent Recognition; and Scalable Integration of Analytics and Visualization. This article presents short summaries of those events.
Reports of the AAAI 2011 Conference Workshops
Agmon, Noa (University of Texas at Austin) | Agrawal, Vikas (Infosys Labs) | Aha, David W. (Naval Research Laboratory) | Aloimonos, Yiannis (University of Maryland, College Park) | Buckley, Donagh (EMC) | Doshi, Prashant (University of Georgia) | Geib, Christopher (University of Edinburgh) | Grasso, Floriana (University of Liverpool) | Green, Nancy (University of North Carolina Greensboro) | Johnston, Benjamin (University of Technology, Sydney) | Kaliski, Burt (VeriSign, Inc.) | Kiekintveld, Christopher (University of Texas at El Paso) | Law, Edith (Carnegie Mellon University) | Lieberman, Henry (Massachusetts Institute of Technology) | Mengshoel, Ole J. (Carnegie Mellon University) | Metzler, Ted (Oklahoma City University) | Modayil, Joseph (University of Alberta) | Oard, Douglas W. (University of Maryland, College Park) | Onder, Nilufer (Michigan Technological University) | O' (University College Cork) | Sullivan, Barry (Cognitive Systems Research Insitute) | Pastra, Katerina (McGill University) | Precup, Doina (Stottler Henke Associates, Inc.) | Ramachandran, Sowmya (University of Dundee) | Reed, Chris (Istanbul Technical University) | Sariel-Talay, Sanem (Carnegie Mellon University) | Selker, Ted (Infosys Technologies Ltd.) | Shastri, Lokendra (Carnegie Mellon University) | Smith, Stephen F. (University of Michigan at Ann Arbor) | Singh, Satinder (University of Wisconsin, Madison) | Srivastava, Siddharth (University of Central Florida) | Sukthankar, Gita (Naval Research Laboratory) | Uthus, David C. (University of Technology, Sydney) | Williams, Mary-Anne
The AAAI-11 workshop program was held Sunday and Monday, August 7–18, 2011, at the Hyatt Regency San Francisco in San Francisco, California USA. The AAAI-11 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were Activity Context Representation: Techniques and Languages; Analyzing Microtext; Applied Adversarial Reasoning and Risk Modeling; Artificial Intelligence and Smarter Living: The Conquest of Complexity; AI for Data Center Management and Cloud Computing; Automated Action Planning for Autonomous Mobile Robots; Computational Models of Natural Argument; Generalized Planning; Human Computation; Human-Robot Interaction in Elder Care; Interactive Decision Theory and Game Theory; Language-Action Tools for Cognitive Artificial Agents: Integrating Vision, Action and Language; Lifelong Learning; Plan, Activity, and Intent Recognition; and Scalable Integration of Analytics and Visualization. This article presents short summaries of those events.
Speech Acts of Argumentation: Inference Anchors and Peripheral Cues in Dialogue
Budzynska, Katarzyna (Cardinal Stefan Wyszynski University, Warsaw) | Reed, Chris (University of Dundee)
It is well known that argumentation can usefully be analysed as a distinct, if complex, type of speech act. Speech acts that form a part of argumentative discourse, and in particular, of argumentative dialogue, can be seen as anchors for the establishment of inferences between propositions in the domain of discourse. Most often, the speech acts that directly give rise to inference are implicit, but can be drawn out in analysis by consideration of the type of dialogue game being played. AI approaches to argumentation often focus solely on such inferences as the means by which persuasion can be effected – but this is in contrast with psychological and rhetorical models which have long recognised the role played by extra-logical features of the dialogical context. These ‘peripheral’ cues can not only affect persuasive effect of the logical, ‘central’ argumentation, but can override and dominate it. This paper presents a theory which allows both central and peripheral aspects of argumentation to be represented in a coherent analytical account based on the sequences of speech acts which constitute dialogues.
Story Schemes for Argumentation about the Facts of a Crime
Bex, Floris Jurriaan (University of Dundee) | Verheij, Bart (University of Groningen)
In the literature on reasoning on the basis of evidence, two traditions exist: one argument-based, and one based on narratives. Recently, we have proposed a hybrid perspective in which argumentation and narratives are combined. This formalized hybrid theory has been tested in a sense-making software prototype for criminal investigators and decision makers. In the present paper, we elaborate on the role of commonsense knowledge. We argue that two kinds of knowledge are essential: argumentation schemes and story schemes. We discuss some of the research issues that need to be addressed.
Persuasive Stories for Multi-Agent Argumentation
Bex, Floris Jurriaan (University of Dundee) | Bench-Capon, Trevor (University of Liverpool)
In this paper, we explore ideas regarding a formal logical model which allows for the use of stories to persuade autonomous software agents to take a particular course of action. This model will show how typical stories – sequences of events that form a meaningful whole – can be used to set an example for an agent and how the agent might adapt his own values and choices according to the values and choices made by the characters in the story.
Seeing with the Hands and with the Eyes: The Contributions of Haptic Cues to Anatomical Shape Recognition in Surgery
Keehner, Madeleine (University of Dundee) | Lowe, Richard K. (Curtin University of Technology)
Medical experts routinely need to identify the shapes of anatomical structures, and surgeons report that they depend substantially on touch to help them with this process. In this paper, we discuss possible reasons why touch may be especially important for anatomical shape recognition in surgery, and why in this domain haptic cues may be at least as informative about shape as visual cues. We go on to discuss modern surgical methods, in which these haptic cues are substantially diminished. We conclude that a potential future challenge is to find ways to reinstate these important cues and to help surgeons recognize shapes in the restricted sensory conditions of minimally invasive surgery.