Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Universitat de Lleida
Reactive Dialectic Search Portfolios for MaxSAT
Ansótegui, Carlos (Universitat de Lleida) | Pon, Josep (Universitat de Lleida) | Sellmann, Meinolf (IBM Research) | Tierney, Kevin (University of Paderborn)
Metaheuristics have been developed to provide general purpose approaches for solving hard combinatorial problems. While these frameworks often serve as the starting point for the development of problem-specific search procedures, they very rarely work efficiently in their default state. We combine the ideas of reactive search, which adjusts key parameters during search, and algorithm configuration, which fine-tunes algorithm parameters for a given set of problem instances, for the automatic compilation of a portfolio of highly reactive dialectic search heuristics for MaxSAT. Even though the dialectic search metaheuristic knows nothing more about MaxSAT than how to evaluate the cost of a truth assignment, our automatically generated solver defines a new state of the art for random weighted partial MaxSAT instances. Moreover, when combined with an industrial MaxSAT solver, the self-assembled reactive portfolio was able to win four out of nine gold medals at the recent 2016 MaxSAT Evaluation on random, crafted, and industrial partial and weighted-partial MaxSAT instances.
The Automated Vacuum Waste Collection Optimization Problem
Béjar, Ramón (Universitat de Lleida) | Fernández, César (Universitat de Lleida) | Mateu, Carles (Universitat de Lleida) | Manyà, Felip (IIIA-CSIC) | Sole-Mauri, Francina (RosRoca Envirotec) | Vidal, David (RosRoca Envirotec)
One of the most challenging problems on modern urban planning and one of the goals to be solved for smart city design is that of urban waste disposal. Given urban population growth, and that the amount of waste generated by each of us citizens is also growing, the total amount of waste to be collected and treated is growing dramatically (EPA 2011), becoming one sensitive issue for local governments. A modern technique for waste collection that is steadily being adopted is automated vacuum waste collection. This technology uses air suction on a closed network of underground pipes to move waste from the collection points to the processing station, reducing greenhouse gas emissions as well as inconveniences to citizens (odors, noise, . . . ) and allowing better waste reuse and recycling. This technique is open to optimize energy consumption because moving huge amounts of waste by air impulsion requires a lot of electric power. The described problem challenge here is, precisely, that of organizing and scheduling waste collection to minimize the amount of energy per ton of collected waste in such a system via the use of Artificial Intelligence techniques. This kind of problems are an inviting opportunity to showcase the possibilities that AI for Computational Sustainability offers.