Universita di Genova
Limiting Logical Violations in Ontology Alignnment Through Negotiation
Jimenez-Ruiz, Ernesto (University of Oxford) | Payne, Terry R. (University of Liverpool) | Solimando, Alessandro (Universita di Genova) | Tamma, Valentina (University of Liverpool)
Ontology alignment (also called ontology matching) is the process of identifying correspondences between entities in different, possibly heterogeneous, ontologies. Traditional ontology alignment techniques rely on the full disclosure of the ontological models; however, within open and opportunistic environments, such approaches may not always be pragmatic or even acceptable (due to privacy concerns). Several studies have focussed on collaborative, decentralised approaches to ontology alignment, where agents negotiate the acceptability of single correspondences acquired from past encounters, or try to ascertain novel correspondences on the fly. However, such approaches can lead to logical violations that may undermine their utility. In this paper, we extend a dialogical approach to correspondence negotiation, whereby agents not only exchange details of possible correspondences, but also identify potential violations to the consistency and conservativity principles. We present a formal model of the dialogue, and show how agents can repair logical violations during the dialogue by invoking a correspondence repair, thus negotiating and exchanging repair plans. We illustrate this opportunistic alignment mechanism with an example and we empirically show that allowing agents to strategically reject or weaken correspondences when these cause violations does not degrade the effectiveness of the alignment computed, whilst reducing the number of residual violations.
Collaborative Expert Portfolio Management
Stern, David (Microsoft FUSE Labs) | Samulowitz, Horst (National ICT Australia and University of Melbourne) | Herbrich, Ralf (Microsoft FUSE Labs) | Graepel, Thore (Microsoft Research) | Pulina, Luca (Universita di Genova) | Tacchella, Armando (Universita di Genova)
We consider the task of assigning experts from a portfolio of specialists in order to solve a set of tasks. We apply a Bayesian model which combines collaborative filtering with a feature-based description of tasks and experts to yield a general framework for managing a portfolio of experts. The model learns an embedding of tasks and problems into a latent space in which affinity is measured by the inner product. The model can be trained incrementally and can track non-stationary data, tracking potentially changing expert and task characteristics. The approach allows us to use a principled decision theoretic framework for expert selection, allowing the user to choose a utility function that best suits their objectives. The model component for taking into account the performance feedback data is pluggable, allowing flexibility. We apply the model to manage a portfolio of algorithms to solve hard combinatorial problems. This is a well studied area and we demonstrate a large improvement on the state of the art in one domain (constraint solving) and in a second domain (combinatorial auctions) created a portfolio that performed significantly better than any single algorithm.