Université Côte d'Azur
Convolutional Ladder Networks for Legal NERC and the Impact of Unsupervised Data in Better Generalizations
Cardellino, Cristian (National University of Córdoba) | Alemany, Laura Alonso (National University of Córdoba) | Teruel, Milagro (National University of Córdoba) | Villata, Serena (Université Côte d'Azur) | Marro, Santiago (National University of Córdoba)
In this paper we adapt the semi-supervised deep learning architecture known as Convolutional Ladder Networks, from the domain of computer vision, and explore how well it works for a semi-supervised Named Entity Recognition and Classification task with legal data. The idea of exploring a semi-supervised technique is to asses the impact of large amounts of unsupervised data (cheap to obtain) in specific tasks that have little annotated data, in order to develop robust models that are less prone to overfitting. In order to achieve this, first we must check the impact on a task that is easier to measure. We are presenting some preliminary results, however, the experiments carried out show some very interesting insights that foster further research in the topic.
Towards Artificial Argumentation
Atkinson, Katie (University of Liverpool) | Baroni, Pietro (Università degli Studi di Brescia) | Giacomin, Massimiliano (Università degli Studi di Brescia) | Hunter, Anthony (University College London) | Prakken, Henry (Utrecht University) | Reed, Chris (University of Dundee) | Simari, Guillermo (Universidad Nacional del Sur) | Thimm, Matthias (Universität Koblenz-Landau) | Villata, Serena (Université Côte d'Azur)
The field of computational models of argument is emerging as an important aspect of artificial intelligence research. The reason for this is based on the recognition that if we are to develop robust intelligent systems, then it is imperative that they can handle incomplete and inconsistent information in a way that somehow emulates the way humans tackle such a complex task. And one of the key ways that humans do this is to use argumentation either internally, by evaluating arguments and counterarguments‚ or externally, by for instance entering into a discussion or debate where arguments are exchanged. As we report in this review, recent developments in the field are leading to technology for artificial argumentation, in the legal, medical, and e-government domains, and interesting tools for argument mining, for debating technologies, and for argumentation solvers are emerging.