Università degli Studi di Brescia
Two-Oracle Optimal Path Planning on Grid Maps
Salvetti, Matteo (Università degli Studi di Brescia ) | Botea, Adi (IBM Research) | Gerevini, Alfonso Emilio (Università degli Studi di Brescia) | Harabor, Daniel (Monash University) | Saetti, Alessandro (Università degli Studi di Brescia)
Path planning on grid maps has progressed significantly in recent years, partly due to the Grid-based Path Planning Competition GPPC. In this work we present an optimal approach which combines features from two modern path planning systems, SRC and JPS+, both of which were among the strongest entrants at the 2014 edition of the competition. Given a current state s and a target state t, SRC is used as an oracle to provide an optimal move from s towards t. Once a direction is available we invoke a second JPS-based oracle to tell us for how many steps that move can be repeated, with no need to query the oracles between these steps. Experiments on a range of grid maps demonstrate a strong improvement from our combined approach. Against SRC, which remains an optimal solver with state-of-the-art speed, the performance improvement of our new system ranges from comparable to more than one order of magnitude faster.
How Many Properties Do We Need for Gradual Argumentation?
Baroni, Pietro (Università degli Studi di Brescia) | Rago, Antonio (Imperial College London) | Toni, Francesca (Imperial College London)
The study of properties of gradual evaluation methods in argumentation has received increasing attention in recent years, with studies devoted to various classes of frameworks/methods leading to conceptually similar but formally distinct properties in different contexts. In this paper we provide a systematic analysis for this research landscape by making three main contributions. First, we identify groups of conceptually related properties in the literature, which can be regarded as based on common patterns and, using these patterns, we evidence that many further properties can be considered. Then, we provide a simplifying and unifying perspective for these properties by showing that they are all implied by the parametric principles of (either strict or non-strict) balance and monotonicity. Finally, we show that (instances of) these principles are satisfied by several quantitative argumentation formalisms in the literature, thus confirming their general validity and their utility to support a compact, yet comprehensive, analysis of properties of gradual argumentation.
Towards Artificial Argumentation
Atkinson, Katie (University of Liverpool) | Baroni, Pietro (Università degli Studi di Brescia) | Giacomin, Massimiliano (Università degli Studi di Brescia) | Hunter, Anthony (University College London) | Prakken, Henry (Utrecht University) | Reed, Chris (University of Dundee) | Simari, Guillermo (Universidad Nacional del Sur) | Thimm, Matthias (Universität Koblenz-Landau) | Villata, Serena (Université Côte d'Azur)
Towards Artificial Argumentation
Atkinson, Katie (University of Liverpool) | Baroni, Pietro (Università degli Studi di Brescia) | Giacomin, Massimiliano (Università degli Studi di Brescia) | Hunter, Anthony (University College London) | Prakken, Henry (Utrecht University) | Reed, Chris (University of Dundee) | Simari, Guillermo (Universidad Nacional del Sur) | Thimm, Matthias (Universität Koblenz-Landau) | Villata, Serena (Université Côte d'Azur)
The field of computational models of argument is emerging as an important aspect of artificial intelligence research. The reason for this is based on the recognition that if we are to develop robust intelligent systems, then it is imperative that they can handle incomplete and inconsistent information in a way that somehow emulates the way humans tackle such a complex task. And one of the key ways that humans do this is to use argumentation either internally, by evaluating arguments and counterarguments‚ or externally, by for instance entering into a discussion or debate where arguments are exchanged. As we report in this review, recent developments in the field are leading to technology for artificial argumentation, in the legal, medical, and e-government domains, and interesting tools for argument mining, for debating technologies, and for argumentation solvers are emerging.