Goto

Collaborating Authors

 USC Institute for Creative Technologies


The Effects of Experience on Deception in Human-Agent Negotiation

Journal of Artificial Intelligence Research

Negotiation is the complex social process by which multiple parties come to mutual agreement over a series of issues. As such, it has proven to be a key challenge problem for designing adequately social AIs that can effectively navigate this space. Artificial AI agents that are capable of negotiating must be capable of realizing policies and strategies that govern offer acceptances, offer generation, preference elicitation, and more. But the next generation of agents must also adapt to reflect their users’ experiences.      The best human negotiators tend to have honed their craft through hours of practice and experience. But, not all negotiators agree on which strategic tactics to use, and endorsement of deceptive tactics in particular is a controversial topic for many negotiators. We examine the ways in which deceptive tactics are used and endorsed in non-repeated human negotiation and show that prior experience plays a key role in governing what tactics are seen as acceptable or useful in negotiation. Previous work has indicated that people that negotiate through artificial agent representatives may be more inclined to fairness than those people that negotiate directly. We present a series of three user studies that challenge this initial assumption and expand on this picture by examining the role of past experience.      This work constructs a new scale for measuring endorsement of manipulative negotiation tactics and introduces its use to artificial intelligence research. It continues by presenting the results of a series of three studies that examine how negotiating experience can change what negotiation tactics and strategies human endorse. Study #1 looks at human endorsement of deceptive techniques based on prior negotiating experience as well as representative effects. Study #2 further characterizes the negativity of prior experience in relation to endorsement of deceptive techniques. Finally, in Study #3, we show that the lessons learned from the empirical observations in Study #1 and #2 can in fact be induced—by designing agents that provide a specific type of negative experience, human endorsement of deception can be predictably manipulated.


The Importance of Cognition and Affect for Artificially Intelligent Decision Makers

AAAI Conferences

Agency - the capacity to plan and act - and experience - the capacity to sense and feel - are two critical aspects that determine whether people will perceive non-human entities, such as autonomous agents, to have a mind. There is evidence that the absence of either can reduce cooperation. We present an experiment that tests the necessity of both for cooperation with agents. In this experiment we manipulated people's perceptions about the cognitive and affective abilities of agents, when engaging in the ultimatum game. The results indicated that people offered more money to agents that were perceived to make decisions according to their intentions (high agency), rather than randomly (low agency). Additionally, the results showed that people offered more money to agents that expressed emotion (high experience), when compared to agents that did not (low experience). We discuss the implications of this agency-experience theoretical framework for the design of artificially intelligent decision makers.


Improving Spoken Dialogue Understanding Using Phonetic Mixture Models

AAAI Conferences

Augmenting word tokens with a phonetic representation, derived from a dictionary, improves the performance of a Natural Language Understanding component that interprets speech recognizer output: we observed a 5% to 7% reduction in errors across a wide range of response return rates. The best performance comes from mixture models incorporating both word and phone features. Since the phonetic representation is derived from a dictionary, the method can be applied easily without the need for integration with a specific speech recognizer. The method has similarities with autonomous (or bottom-up) psychological models of lexical access, where contextual information is not integrated at the stage of auditory perception but rather later.