Goto

Collaborating Authors

 UNSW Sydney


Minesweeper with Limited Moves

AAAI Conferences

We consider the problem of playing Minesweeper with a limited number of moves: Given a partially revealed board, a number of available clicks k, and a target probability p, can we win with probability p. We win if we do not click on a mine, and, after our sequence of at most k clicks (which reveal information about the neighboring squares) can correctly identify the placement of all mines. We make the assumption, that, at all times, all placements of mines consistent with the currently revealed squares are equiprobable. Our main results are that the problem is PSPACE-complete, and it remains PSPACE-complete when p is a constant, in particular when p = 1. When k = 0 (i.e., we are not allowed to click anywhere), the problem is PP-complete in general, but co-NP-complete when p is a constant, and in particular when p = 1.


The Conference Paper Assignment Problem: Using Order Weighted Averages to Assign Indivisible Goods

AAAI Conferences

We propose a novel mechanism for solving the assignment problem when we have a two sided matching problem with preferences from one side (the agents/reviewers) over the other side (the objects/papers) and both sides have capacity constraints. The assignment problem is a fundamental in both computer science and economics with application in many areas including task and resource allocation. Drawing inspiration from work in multi-criteria decision making and social choice theory we use order weighted averages (OWAs), a parameterized class of mean aggregators, to propose a novel and flexible class of algorithms for the assignment problem. We show an algorithm for finding an SUM-OWA assignment in polynomial time, in contrast to the NP-hardness of finding an egalitarian assignment. We demonstrate through empirical experiments that using SUM-OWA assignments can lead to high quality and more fair assignments.