Tsinghua Univerisity
On Trivial Solution and High Correlation Problems in Deep Supervised Hashing
Guo, Yuchen (Tsinghua Univerisity) | Zhao, Xin (Tsinghua Univerisity) | Ding, Guiguang (Tsinghua Univerisity) | Han, Jungong (Lancaster University)
Deep supervised hashing (DSH), which combines binary learning and convolutional neural network, has attracted considerable research interests and achieved promising performance for highly efficient image retrieval. In this paper, we show that the widely used loss functions, pair-wise loss and triplet loss, suffer from the trivial solution problem and usually lead to highly correlated bits in practice, limiting the performance of DSH. One important reason is that it is difficult to incorporate proper constraints into the loss functions under the mini-batch based optimization algorithm. To tackle these problems, we propose to adopt ensemble learning strategy for deep model training. We found out that this simple strategy is capable of effectively decorrelating different bits, making the hashcodes more informative. Moreover, it is very easy to parallelize the training and support incremental model learning, which are very useful for real-world applications but usually ignored by existing DSH approaches. Experiments on benchmarks demonstrate the proposed ensemble based DSH can improve the performance of DSH approaches significant.
Zero-Shot Learning With Attribute Selection
Guo, Yuchen (Tsinghua Univerisity) | Ding, Guiguang (Tsinghua Univerisity) | Han, Jungong (Lancaster University) | Tang, Sheng (Institute of Computing Technology, Chinese Academy of Sciences)
Zero-shot learning (ZSL) is regarded as an effective way to construct classification models for target classes which have no labeled samples available. The basic framework is to transfer knowledge from (different) auxiliary source classes having sufficient labeled samples with some attributes shared by target and source classes as bridge. Attributes play an important role in ZSL but they have not gained sufficient attention in recent years. Previous works mostly assume attributes are perfect and treat each attribute equally. However, as shown in this paper, different attributes have different properties, such as their class distribution, variance, and entropy, which may have considerable impact on ZSL accuracy if treated equally. Based on this observation, in this paper we propose to use a subset of attributes, instead of the whole set, for building ZSL models. The attribute selection is conducted by considering the information amount and predictability under a novel joint optimization framework. To our knowledge, this is the first work that notices the influence of attributes themselves and proposes to use a refined attribute set for ZSL. Since our approach focuses on selecting good attributes for ZSL, it can be combined to any attribute based ZSL approaches so as to augment their performance. Experiments on four ZSL benchmarks demonstrate that our approach can improve zero-shot classification accuracy and yield state-of-the-art results.
Problems in Large-Scale Image Classification
Guo, Yuchen (Tsinghua Univerisity)
The number of images is growing rapidly in recent years because of development of Internet, especially the social networks like Facebook, and the popularization of portable image capture devices like smart phone. Annotating them with semantically meaningful words to describe them, i.e., classification, is a useful way to manage these images. However, the huge number of images and classes brings several challenges to classification, of which two are 1) how to measure the similarity efficiently between large-scale images, for example, measuring similarity between samples is the building block for SVM and kNN classifiers, and 2) how to train supervised classification models for newly emerging classes with only a few or even no labeled samples because new concepts appear every day in the Web, like Tesla's Model S. The research of my Ph. D. thesis focuses on the two problems in large-scale image classification mentioned above. Formally, these two problems are termed as large-scale similarity search which focuses on the large scale of samples/images and zero-shot/few-shots learning which focuses on the large scale of classes. Specifically, my research considers the following three aspects: 1) hashing based large-scale similarity search which adopts hashing to improve the efficiency; 2) cross-class transfer active learning which simultaneously transfers knowledge from the abundant labeled samples in the Web and selects the most informative samples for expert labeling such that we can construct effective classifiers for novel classes with only a few labeled samples; and 3) zero-shot learning which utilizes no labeled samples for novel classes at all to build supervised classifiers for them by transferring knowledge from the related classes.
Zero-Shot Recognition via Direct Classifier Learning with Transferred Samples and Pseudo Labels
Guo, Yuchen (Tsinghua Univerisity) | Ding, Guiguang (Tsinghua University) | Han, Jungong (Northumbria University) | Gao, Yue (Tsinghua University)
As an interesting and emerging topic, zero-shot recognition (ZSR) makes it possible to train a recognition model by specifying the category's attributes when there are no labeled exemplars available. The fundamental idea for ZSR is to transfer knowledge from the abundant labeled data in different but related source classes via the class attributes. Conventional ZSR approaches adopt a two-step strategy in test stage, where the samples are projected into the attribute space in the first step, and then the recognition is carried out based on considering the relationship between samples and classes in the attribute space. Due to this intermediate transformation, information loss is unavoidable, thus degrading the performance of the overall system. Rather than following this two-step strategy, in this paper, we propose a novel one-step approach that is able to perform ZSR in the original feature space by using directly trained classifiers. To tackle the problem that no labeled samples of target classes are available, we propose to assign pseudo labels to samples based on the reliability and diversity, which in turn will be used to train the classifiers. Moreover, we adopt a robust SVM that accounts for the unreliability of pseudo labels. Extensive experiments on four datasets demonstrate consistent performance gains of our approach over the state-of-the-art two-step ZSR approaches.
Active Learning with Cross-Class Similarity Transfer
Guo, Yuchen (Tsinghua Univerisity) | Ding, Guiguang (Tsinghua University) | Gao, Yue (Tsinghua University) | Han, Jungong (Northumbria University)
How to save labeling efforts for training supervised classifiers is an important research topic in machine learning community. Active learning (AL) and transfer learning (TL) are two useful tools to achieve this goal, and their combination, i.e., transfer active learning (T-AL) has also attracted considerable research interest. However, existing T-AL approaches consider to transfer knowledge from a source/auxiliary domain which has the same class labels as the target domain, but ignore the relationship among classes. In this paper, we investigate a more practical setting where the classes in source domain are related/similar to but different from the target domain classes. Specifically, we propose a novel cross-class T-AL approach to simultaneously transfer knowledge from source domain and actively annotate the most informative samples in target domain so that we can train satisfactory classifiers with as few labeled samples as possible. In particular, based on the class-class similarity and sample-sample similarity, we adopt a similarity propagation to find the source domain samples that can well capture the characteristics of a target class and then transfer the similar samples as the (pseudo) labeled data for the target class. In turn, the labeled and transferred samples are used to train classifiers and actively select new samples for annotation. Extensive experiments on three datasets demonstrate that the proposed approach outperforms significantly the state-of-the-art related approaches.
Active Learning with Cross-Class Knowledge Transfer
Guo, Yuchen (Tsinghua Univerisity) | Ding, Guiguang (Tsinghua University) | Wang, Yuqi (Tsinghua University) | Jin, Xiaoming (Tsinghua University)
When there are insufficient labeled samples for training a supervised model, we can adopt active learning to select the most informative samples for human labeling, or transfer learning to transfer knowledge from related labeled data source. Combining transfer learning with active learning has attracted much research interest in recent years. Most existing works follow the setting where the class labels in source domain are the same as the ones in target domain. In this paper, we focus on a more challenging cross-class setting where the class labels are totally different in two domains but related to each other in an intermediary attribute space, which is barely investigated before. We propose a novel and effective method that utilizes the attribute representation as the seed parameters to generate the classification models for classes. And we propose a joint learning framework that takes into account the knowledge from the related classes in source domain, and the information in the target domain. Besides, it is simple to perform uncertainty sampling, a fundamental technique for active learning, based on the framework. We conduct experiments on three benchmark datasets and the results demonstrate the efficacy of the proposed method.
Transductive Zero-Shot Recognition via Shared Model Space Learning
Guo, Yuchen (Tsinghua Univerisity) | Ding, Guiguang (Tsinghua University) | Jin, Xiaoming (Tsinghua University) | Wang, Jianmin (Tsinghua University)
Zero-shot Recognition (ZSR) is to learn recognition models for novel classes without labeled data. It is a challenging task and has drawn considerable attention in recent years. The basic idea is to transfer knowledge from seen classes via the shared attributes. This paper focus on the transductive ZSR, i.e., we have unlabeled data for novel classes. Instead of learning models for seen and novel classes separately as in existing works, we put forward a novel joint learning approach which learns the shared model space (SMS) for models such that the knowledge can be effectively transferred between classes using the attributes. An effective algorithm is proposed for optimization. We conduct comprehensive experiments on three benchmark datasets for ZSR. The results demonstrates that the proposed SMS can significantly outperform the state-of-the-art related approaches which validates its efficacy for the ZSR task.
Learning Predictable and Discriminative Attributes for Visual Recognition
Guo, Yuchen (Tsinghua Univerisity) | Ding, Guiguang (Tsinghua University) | Jin, Xiaoming (Tsinghua University) | Wang, Jianmin (Tsinghua University)
Utilizing attributes for visual recognition has attracted increasingly interest because attributes can effectively bridge the semantic gap between low-level visual features and high-level semantic labels. In this paper, we propose a novel method for learning predictable and discriminative attributes. Specifically, we require the learned attributes can be reliably predicted from visual features, and discover the inherent discriminative structure of data. In addition, we propose to exploit the intra-category locality of data to overcome the intra-category variance in visual data. We conduct extensive experiments on Animals with Attributes (AwA) and Caltech256 datasets, and the results demonstrate that the proposed method achieves state-of-the-art performance.