The University of Queensland
Hybrid Attentive Answer Selection in CQA With Deep Users Modelling
Wen, Jiahui (The University of Queensland) | Ma, Jingwei (The University of Queensland) | Feng, Yiliu (National University of Defence Technology) | Zhong, Mingyang (The University of Queensland)
In this paper, we propose solutions to advance answer selection in Community Question Answering (CQA). Unlike previous works, we propose a hybrid attention mechanism to model question-answer pairs. Specifically, for each word, we calculate the intra-sentence attention indicating its local importance and the inter-sentence attention implying its importance to the counterpart sentence. The inter-sentence attention is based on the interactions between question-answer pairs, and the combination of these two attention mechanisms enables us to align the most informative parts in question-answer pairs for sentence matching. Additionally, we exploit user information for answer selection due to the fact that users are more likely to provide correct answers in their areas of expertise. We model users from their written answers to alleviate data sparsity problem, and then learn user representations according to the informative parts in sentences that are useful for question-answer matching task. This mean of modelling users can bridge the semantic gap between different users, as similar users may have the same way of wording their answers. The representations of users, questions and answers are learnt in an end-to-end neural network in a mean that best explains the interrelation between question-answer pairs. We validate the proposed model on a public dataset, and demonstrate its advantages over the baselines with thorough experiments.
Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface
Zhang, Dalin (The University of New South Wales) | Yao, Lina (The University of New South Wales) | Zhang, Xiang (The University of New South Wales) | Wang, Sen (Griffith University) | Chen, Weitong (The University of Queensland) | Boots, Robert (Royal Brisbane and Women's Hospital) | Benatallah, Boualem (The University of Queensland)
Brain-Computer Interface (BCI) is a system empowering humans to communicate with or control the outside world with exclusively brain intentions. Electroencephalography (EEG) based BCIs are promising solutions due to their convenient and portable instruments. Despite the extensive research of EEG in recent years, it is still challenging to interpret EEG signals effectively due to the massive noises in EEG signals (e.g., low signal-noise ratio and incomplete EEG signals), and difficulties in capturing the inconspicuous relationships between EEG signals and certain brain activities. Most existing works either only consider EEG as chain-like sequences neglecting complex dependencies between adjacent signals or requiring pre-processing such as transforming EEG waves into images. In this paper, we introduce both cascade and parallel convolutional recurrent neural network models for precisely identifying human intended movements and instructions effectively learning the compositional spatio-temporal representations of raw EEG streams. Extensive experiments on a large scale movement intention EEG dataset (108 subjects,3,145,160 EEG records) have demonstrated that both models achieve high accuracy near 98.3% and outperform a set of baseline methods and most recent deep learning based EEG recognition models, yielding a significant accuracy increase of 18% in the cross-subject validation scenario. The developed models are further evaluated with a real-world BCI and achieve a recognition accuracy of 93% over five instruction intentions. This suggests the proposed models are able to generalize over different kinds of intentions and BCI systems.
Web-Based Semantic Fragment Discovery for On-Line Lingual-Visual Similarity
Sun, Xiaoshuai (The University of Queensland and Harbin Institute of Technology) | Cao, Jiewei (The University of Queensland) | Li, Chao (The University of Queensland) | Zhu, Lei (The University of Queensland) | Shen, Heng Tao (The University of Queensland and University of Electronic Science and Technology of China)
In this paper, we present an automatic approach for on-line discovery of visual-lingual semantic fragments from weakly labeled Internet images. Instead of learning region-entity correspondences from well-labeled image-sentence pairs, our approach directly collects and enhances the weakly labeled visual contents from the Web and constructs an adaptive visual representation which automatically links generic lingual phrases to their related visual contents. To ensure reliable and efficient semantic discovery, we adopt non-parametric density estimation to re-rank the related visual instances and proposed a fast self-similarity-based quality assessment method to identify the high-quality semantic fragments. The discovered semantic fragments provide an adaptive joint representation for texts and images, based on which lingual-visual similarity can be defined for further co-analysis of heterogeneous multimedia data. Experimental results on semantic fragment quality assessment, sentence-based image retrieval, automatic multimedia insertion and ordering demonstrated the effectiveness of the proposed framework.The experiments show that the proposed methods can make effective use of the Web knowledge, and are able to generate competitive results compared to state-of-the-art approaches in various tasks.
Event Video Mashup: From Hundreds of Videos to Minutes of Skeleton
Gao, Lianli (University of Electronic Science and Technology of China) | Wang, Peng (The University of Queensland) | Song, Jingkuan (Columbia University) | Huang, Zi (The University of Queensland) | Shao, Jie (University of Electronic Science and Technology of China) | Shen, Heng Tao (University of Electronic Science and Technology of China)
The explosive growth of video content on the Web has been revolutionizing the way people share, exchange and perceive information, such as events. While an individual video usually concerns a specific aspect of an event, the videos that are uploaded by different users at different locations and times can embody different emphasis and compensate each other in describing the event. Combining these videos from different sources together can unveil a more complete picture of the event. Simply concatenating videos together is an intuitive solution, but it may degrade user experience since it is time-consuming and tedious to view those highly redundant, noisy and disorganized content. Therefore, we develop a novel approach, termed event video mashup (EVM), to automatically generate a unified short video from a collection of Web videos to describe the storyline of an event. We propose a submodular based content selection model that embodies both importance and diversity to depict the event from comprehensive aspects in an efficient way. Importantly, the video content is organized temporally and semantically conforming to the event evolution. We evaluate our approach on a real-world YouTube event dataset collected by ourselves. The extensive experimental results demonstrate the effectiveness of the proposed framework.
An Integrated Model for Effective Saliency Prediction
Sun, Xiaoshuai (The University of Queensland<) | Huang, Zi (and Harbin Institute of Technology) | Yin, Hongzhi (The University of Queensland) | Shen, Heng Tao (The University of Queensland)
In this paper, we proposed an integrated model of both semantic-aware and contrast-aware saliency (SCA) combining both bottom-up and top-down cues for effective eye fixation prediction. The proposed (SCA) model contains two pathways. The first pathway is a deep neural network customized for semantic-aware saliency, which aims to capture the semantic information in images, especially for the presence of meaningful objects and object parts. The second pathway is based on on-line feature learning and information maximization, which learns an adaptive representation for the input and discovers the high contrast salient patterns within the image context. The two pathways characterize both long-term and short-term attention cues and are integrated using maxima normalization. Experimental results on artificial images and several benchmark dataset demonstrate the superior performance and better plausibility of the proposed model over both classic approaches and recent deep models.
Graph-without-cut: An Ideal Graph Learning for Image Segmentation
Gao, Lianli (University of Electronic Science and Technology of China) | Song, Jingkuan (University of Trento) | Nie, Feiping (Northwestern Polytechnical University) | Zou, Fuhao (Huazhong University of Science and Technology) | Sebe, Nicu (University of Trento) | Shen, Heng Tao (The University of Queensland)
Graph-based image segmentation organizes the image elements into graphs and partitions an image based on the graph. It has been widely used and many promising results are obtained. Since the segmentation performance highly depends on the graph, most of existing methods focus on obtaining a precise similarity graph or on designing efficient cutting/merging strategies. However, these two components are often conducted in two separated steps, and thus the obtained graph similarity may not be the optimal one for segmentation and this may lead to suboptimal results. In this paper, we propose a novel framework, Graph-Without-Cut (GWC), for learning the similarity graph and image segmentations simultaneously. GWC learns the similarity graph by assigning adaptive and optimal neighbors to each vertex based on the spatial and visual information. Meanwhile, the new rank constraint is imposed to the Laplacian matrix of the similarity graph, such that the connected components in the resulted similarity graph are exactly equal to the region number. Extensive empirical results on three public data sets (i.e, BSDS300, BSDS500 and MSRC) show that our unsupervised GWC achieves state-of-the-art performance compared with supervised and unsupervised image segmentation approaches.
A Convex Formulation for Spectral Shrunk Clustering
Chang, Xiaojun (University of Technology Sydney) | Nie, Feiping (University of Texas at Arlington) | Ma, Zhigang (Carnegie Mellon University) | Yang, Yi (University of Technology Sydney) | Zhou, Xiaofang (The University of Queensland)
Spectral clustering is a fundamental technique in the field of data mining and information processing. Most existing spectral clustering algorithms integrate dimensionality reduction into the clustering process assisted by manifold learning in the original space. However, the manifold in reduced-dimensional subspace is likely to exhibit altered properties in contrast with the original space. Thus, applying manifold information obtained from the original space to the clustering process in a low-dimensional subspace is prone to inferior performance. Aiming to address this issue, we propose a novel convex algorithm that mines the manifold structure in the low-dimensional subspace. In addition, our unified learning process makes the manifold learning particularly tailored for the clustering. Compared with other related methods, the proposed algorithm results in more structured clustering result. To validate the efficacy of the proposed algorithm, we perform extensive experiments on several benchmark datasets in comparison with some state-of-the-art clustering approaches. The experimental results demonstrate that the proposed algorithm has quite promising clustering performance.
A Convex Formulation for Semi-Supervised Multi-Label Feature Selection
Chang, Xiaojun (The University of Queensland) | Nie, Feiping (University of Texas at Arlington) | Yang, Yi (The University of Queensland) | Huang, Heng (University of Texas at Arlington)
Explosive growth of multimedia data has brought challenge of how to efficiently browse, retrieve and organize these data. Under this circumstance, different approaches have been proposed to facilitate multimedia analysis. Several semi-supervised feature selection algorithms have been proposed to exploit both labeled and unlabeled data. However, they are implemented based on graphs, such that they cannot handle large-scale datasets. How to conduct semi-supervised feature selection on large-scale datasets has become a challenging research problem. Moreover, existing multi-label feature selection algorithms rely on eigen-decomposition with heavy computational burden, which further prevent current feature selection algorithms from being applied for big data. In this paper, we propose a novel convex semi-supervised multi-label feature selection algorithm, which can be applied to large-scale datasets. We evaluate performance of the proposed algorithm over five benchmark datasets and compare the results with state-of-the-art supervised and semi-supervised feature selection algorithms as well as baseline using all features. The experimental results demonstrate that our proposed algorithm consistently achieve superiors performances.
Unsupervised Feature Selection Using Nonnegative Spectral Analysis
Li, Zechao (Chinese Academy of Sciences) | Yang, Yi (Carnegie Mellon University) | Liu, Jing (Chinese Academy of Sciences) | Zhou, Xiaofang (The University of Queensland) | Lu, Hanqing (Chinese Academy of Science)
In this paper, a new unsupervised learning algorithm, namely Nonnegative Discriminative Feature Selection (NDFS), is proposed. To exploit the discriminative information in unsupervised scenarios, we perform spectral clustering to learn the cluster labels of the input samples, during which the feature selection is performed simultaneously. The joint learning of the cluster labels and feature selection matrix enables NDFS to select the most discriminative features. To learn more accurate cluster labels, a nonnegative constraint is explicitly imposed to the class indicators. To reduce the redundant or even noisy features, l 2,1 -norm minimization constraint is added into the objective function, which guarantees the feature selection matrix sparse in rows. Our algorithm exploits the discriminative information and feature correlation simultaneously to select a better feature subset. A simple yet efficient iterative algorithm is designed to optimize the proposed objective function. Experimental results on different real world datasets demonstrate the encouraging performance of our algorithm over the state-of-the-arts.
Nonnegative Spectral Clustering with Discriminative Regularization
Yang, Yi (The University of Queensland) | Shen, Heng Tao (The University of Queensland) | Nie, Feiping (University of Texas at Arlington) | Ji, Rongrong (Columbia University) | Zhou, Xiaofang (The University of Queensland)
Clustering is a fundamental research topic in the field of data mining. Optimizing the objective functions of clustering algorithms, e.g. normalized cut and k-means, is an NP-hard optimization problem. Existing algorithms usually relax the elements of cluster indicator matrix from discrete values to continuous ones. Eigenvalue decomposition is then performed to obtain a relaxed continuous solution, which must be discretized. The main problem is that the signs of the relaxed continuous solution are mixed. Such results may deviate severely from the true solution, making it a nontrivial task to get the cluster labels. To address the problem, we impose an explicit nonnegative constraint for a more accurate solution during the relaxation. Besides, we additionally introduce a discriminative regularization into the objective to avoid overfitting. A new iterative approach is proposed to optimize the objective. We show that the algorithm is a general one which naturally leads to other extensions. Experiments demonstrate the effectiveness of our algorithm.