Goto

Collaborating Authors

 The Technion-Israel Institute of Technology


Automated Verification of Social Law Robustness in STRIPS

AAAI Conferences

Agents operating in a multi-agent environment must consider not just their own actions, but also those of the other agents in the system. Artificial social systems are a well known means for coordinating a set of agents, without requiring centralized planning or online negotiation between agents. Artificial social systems enact a social law which restricts the agents from performing some actions under some circumstances. A good social law prevents the agents from interfering with each other, but does not prevent them from achieving their goals. However, designing good social laws, or even checking whether a proposed social law is good, are hard questions. In this paper, we take a first step towards automating these processes, by formulating criteria for good social laws in a multi-agent planning framework. We then describe an automated technique for verifying if a proposed social law meets these criteria, based on a compilation to classical planning.


Adapting Novelty to Classical Planning as Heuristic Search

AAAI Conferences

The introduction of the concept of state novelty has advanced the state of the art in deterministic online planning in Atari-like problems and in planning with rewards in general, when rewards are defined on states. In classical planning, however, the success of novelty as the dichotomy between novel and non-novel states was somewhat limited. Until very recently, novelty-based methods were not able to successfully compete with state-of-the-art heuristic search based planners. In this work we adapt the concept of novelty to heuristic search planning, defining the novelty of a state with respect to its heuristic estimate. We extend the dichotomy between novel and non-novel states and quantify the novelty degree of state facts. We then show a variety of heuristics based on the concept of novelty and exploit the recently introduced best-first width search for satisficing classical planning. Finally, we empirically show the resulting planners to significantly improve the state of the art in satisficing planning.