Goto

Collaborating Authors

 The Chinese University of Hong Kong


Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition

AAAI Conferences

Dynamics of human body skeletons convey significant information for human action recognition. Conventional approaches for modeling skeletons usually rely on hand-crafted parts or traversal rules, thus resulting in limited expressive power and difficulties of generalization. In this work, we propose a novel model of dynamic skeletons called Spatial-Temporal Graph Convolutional Networks (ST-GCN), which moves beyond the limitations of previous methods by automatically learning both the spatial and temporal patterns from data. This formulation not only leads to greater expressive power but also stronger generalization capability. On two large datasets, Kinetics and NTU-RGBD, it achieves substantial improvements over mainstream methods.


Recurrently Aggregating Deep Features for Salient Object Detection

AAAI Conferences

Salient object detection is a fundamental yet challenging problem in computer vision, aiming to highlight the most visually distinctive objects or regions in an image. Recent works benefit from the development of fully convolutional neural networks (FCNs) and achieve great success by integrating features from multiple layers of FCNs. However, the integrated features tend to include non-salient regions (due to low level features of the FCN) or lost details of salient objects (due to high level features of the FCN) when producing the saliency maps. In this paper, we develop a novel deep saliency network equipped with recurrently aggregated deep features (RADF) to more accurately detect salient objects from an image by fully exploiting the complementary saliency information captured in different layers. The RADF utilizes the multi-level features integrated from different layers of a FCN to recurrently refine the features at each layer, suppressing the non-salient noise at low-level of the FCN and increasing more salient details into features at high layers. We perform experiments to evaluate the effectiveness of the proposed network on 5 famous saliency detection benchmarks and compare it with 15 state-of-the-art methods. Our method ranks first in 4 of the 5 datasets and second in the left dataset.


A Cascaded Inception of Inception Network With Attention Modulated Feature Fusion for Human Pose Estimation

AAAI Conferences

Accurate keypoint localization of human pose needs diversified features: the high level for contextual dependencies and the low level for detailed refinement of joints. However, the importance of the two factors varies from case to case, but how to efficiently use the features is still an open problem. Existing methods have limitations in preserving low level features, adaptively adjusting the importance of different levels of features, and modeling the human perception process. This paper presents three novel techniques step by step to efficiently utilize different levels of features for human pose estimation. Firstly, an inception of inception (IOI) block is designed to emphasize the low level features. Secondly, an attention mechanism is proposed to adjust the importance of individual levels according to the context. Thirdly, a cascaded network is proposed to sequentially localize the joints to enforce message passing from joints of stand-alone parts like head and torso to remote joints like wrist or ankle. Experimental results demonstrate that the proposed method achieves the state-of-the-art performance on both MPII and LSP benchmarks.


Online Clustering of Contextual Cascading Bandits

AAAI Conferences

We consider a new setting of online clustering of contextual cascading bandits, an online learning problem where the underlying cluster structure over users is unknown and needs to be learned from a random prefix feedback. More precisely, a learning agent recommends an ordered list of items to a user, who checks the list and stops at the first satisfactory item, if any. We propose an algorithm of CLUB-cascade for this setting and prove an n-step regret bound of order O(โˆšn). Previous work corresponds to the degenerate case of only one cluster, and our general regret bound in this special case also significantly improves theirs. We conduct experiments on both synthetic and real data, and demonstrate the effectiveness of our algorithm and the advantage of incorporating online clustering method.


Towards Imperceptible and Robust Adversarial Example Attacks Against Neural Networks

AAAI Conferences

Machine learning systems based on deep neural networks, being able to produce state-of-the-art results on various perception tasks, have gained mainstream adoption in many applications. However, they are shown to be vulnerable to adversarial example attack, which generates malicious output by adding slight perturbations to the input. Previous adversarial example crafting methods, however, use simple metrics to evaluate the distances between the original examples and the adversarial ones, which could be easily detected by human eyes. In addition, these attacks are often not robust due to the inevitable noises and deviation in the physical world. In this work, we present a new adversarial example attack crafting method, which takes the human perceptual system into consideration and maximizes the noise tolerance of the crafted adversarial example. Experimental results demonstrate the efficacy of the proposed technique.


A Parallelizable Acceleration Framework for Packing Linear Programs

AAAI Conferences

This paper presents an acceleration framework for packing linear programming problems where the amount of data available is limited, i.e., where the number of constraints m is small compared to the variable dimension n. The framework can be used as a black box to speed up linear programming solvers dramatically, by two orders of magnitude in our experiments. We present worst-case guarantees on the quality of the solution and the speedup provided by the algorithm, showing that the framework provides an approximately optimal solution while running the original solver on a much smaller problem. The framework can be used to accelerate exact solvers, approximate solvers, and parallel/distributed solvers. Further, it can be used for both linear programs and integer linear programs.


A Semi-Supervised Network Embedding Model for Protein Complexes Detection

AAAI Conferences

Protein complex is a group of associated polypeptide chains which plays essential roles in biological process. Given a graph representing protein-protein interactions (PPI) network, it is critical but non-trivial to detect protein complexes.In this paper, we propose a semi-supervised network embedding model by adopting graph convolutional networks to effectively detect densely connected subgraphs. We conduct extensive experiment on two popular PPI networks with various data sizes and densities. The experimental results show our approach achieves state-of-the-art performance.


Region-Based Quality Estimation Network for Large-Scale Person Re-Identification

AAAI Conferences

One of the major restrictions on the performance of video-based person re-id is partial noise caused by occlusion, blur and illumination. Since different spatial regions of a single frame have various quality, and the quality of the same region also varies across frames in a tracklet, a good way to address the problem is to effectively aggregate complementary information from all frames in a sequence, using better regions from other frames to compensate the influence of an image region with poor quality. To achieve this, we propose a novel Region-based Quality Estimation Network (RQEN), in which an ingenious training mechanism enables the effective learning to extract the complementary region-based information between different frames. Compared with other feature extraction methods, we achieved comparable results of 92.4%, 76.1% and 77.83% on the PRID 2011, iLIDS-VID and MARS, respectively. In addition, to alleviate the lack of clean large-scale person re-id datasets for the community, this paper also contributes a new high-quality dataset, named "Labeled Pedestrian in the Wild (LPW)" which contains 7,694 tracklets with over 590,000 images. Despite its relatively large scale, the annotations also possess high cleanliness. Moreover, it's more challenging in the following aspects: the age of characters varies from childhood to elderhood; the postures of people are diverse, including running and cycling in addition to the normal walking state.


SFCN-OPI: Detection and Fine-Grained Classification of Nuclei Using Sibling FCN With Objectness Prior Interaction

AAAI Conferences

Cell nuclei detection and fine-grained classification have been fundamental yet challenging problems in histopathology image analysis. Due to the nuclei tiny size, significant inter-/intra-class variances, as well as the inferior image quality, previous automated methods would easily suffer from limited accuracy and robustness. In the meanwhile, existing approaches usually deal with these two tasks independently, which would neglect the close relatedness of them. In this paper, we present a novel method of sibling fully convolutional network with prior objectness interaction (called SFCN-OPI) to tackle the two tasks simultaneously and interactively using a unified end-to-end framework. Specifically, the sibling FCN branches share features in earlier layers while holding respective higher layers for specific tasks. More importantly, the detection branch outputs the objectness prior which dynamically interacts with the fine-grained classification sibling branch during the training and testing processes. With this mechanism, the fine-grained classification successfully focuses on regions with high confidence of nuclei existence and outputs the conditional probability, which in turn benefits the detection through back propagation. Extensive experiments on colon cancer histology images have validated the effectiveness of our proposed SFCN-OPI and our method has outperformed the state-of-the-art methods by a large margin.


Accelerated Training for Massive Classification via Dynamic Class Selection

AAAI Conferences

Massive classification, a classification task defined over a vast number of classes (hundreds of thousands or even millions), has become an essential part of many real-world systems, such as face recognition. Existing methods, including the deep networks that achieved remarkable success in recent years, were mostly devised for problems with a moderate number of classes. They would meet with substantial difficulties, e.g., excessive memory demand and computational cost, when applied to massive problems. We present a new method to tackle this problem. This method can efficiently and accurately identify a small number of "active classes" for each mini-batch, based on a set of dynamic class hierarchies constructed on the fly. We also develop an adaptive allocation scheme thereon, which leads to a better tradeoff between performance and cost. On several large-scale benchmarks, our method significantly reduces the training cost and memory demand, while maintaining competitive performance.