Goto

Collaborating Authors

 Technische Universitaet Darmstadt


Anticipative Interaction Primitives for Human-Robot Collaboration

AAAI Conferences

This paper introduces our initial investigation on the problem of providing a semi-autonomous robot collaborator with anticipative capabilities to predict human actions. Anticipative robot behavior is a desired characteristic of robot collaborators that lead to fluid, proactive interactions. We are particularly interested in improving reactive methods that rely on human action recognition to activate the corresponding robot action. Action recognition invariably causes delay in the robot’s response, and the goal of our method is to eliminate this delay by predicting the next human action. Prediction is achieved by using a lookup table containing variations of assembly sequences, previously demonstrated by different users. The method uses the nearest neighbor sequence in the table that matches the actual sequence of human actions. At the movement level, our method uses a probabilistic representation of interaction primitives to generate robot trajectories. The method is demonstrated using a 7 degree-of-freedom lightweight arm equipped with a 5-finger hand on an assembly task consisting of 17 steps.


Marginalized Continuous Time Bayesian Networks for Network Reconstruction from Incomplete Observations

AAAI Conferences

Continuous Time Bayesian Networks (CTBNs) provide a powerful means to model complex network dynamics. How- ever, their inference is computationally demanding — especially if one considers incomplete and noisy time-series data. The latter gives rise to a joint state- and parameter estimation problem, which can only be solved numerically. Yet, finding the exact parameterization of the CTBN has often only secondary importance in practical scenarios. We therefore focus on the structure learning problem and present a way to analytically marginalize the Markov chain underlying the CTBN model with respect its parameters. Since the resulting stochastic process is parameter-free, its inference reduces to an optimal filtering problem. We solve the latter using an efficient parallel implementation of a sequential Monte Carlo scheme. Our framework enables CTBN inference to be applied to incomplete noisy time-series data frequently found in molecular biology and other disciplines.


Learning to Select and Generalize Striking Movements in Robot Table Tennis

AAAI Conferences

Learning new motor tasks autonomously from interaction with a human being is an important goal for both robotics and machine learning. However, when moving beyond basic skills, most monolithic machine learning approaches fail to scale. In this paper, we take the task of learning table tennis as an example and present a new framework which allows a robot to learn cooperative table tennis from interaction with a human. Therefore, the robot first learns a set of elementary table tennis hitting movements from a human teacher by kinesthetic teach-in, which is compiled into a set of dynamical system motor primitives (DMPs). Subsequently, the system generalizes these movements to a wider range of situations using our mixture of motor primitives (MoMP) approach. The resulting policy enables the robot to select appropriate motor primitives as well as to generalize between them. Finally, the robot plays with a human table tennis partner and learns online to improve its behavior.