Goto

Collaborating Authors

 Technische Universität Dortmund


Lifted Inference for Convex Quadratic Programs

AAAI Conferences

Symmetry is the essential element of lifted inferencethat has recently demonstrated the possibility to perform very efficient inference in highly-connected, but symmetric probabilistic models. This raises the question, whether this holds for optimization problems in general.Here we show that for a large classof optimization methods this is actually the case.Specifically, we introduce the concept of fractionalsymmetries of convex quadratic programs (QPs),which lie at the heart of many AI and machine learning approaches,and exploit it to lift, i.e., to compress QPs.These lifted QPs can then be tackled with the usual optimization toolbox (off-the-shelf solvers, cutting plane algorithms,stochastic gradients etc.). If the original QP exhibitssymmetry, then the lifted one will generallybe more compact, and hence more efficient to solve.


Poisson Sum-Product Networks: A Deep Architecture for Tractable Multivariate Poisson Distributions

AAAI Conferences

Multivariate count data are pervasive in science in the form of histograms, contingency tables and others. Previous work on modeling this type of distributions do not allow for fast and tractable inference. In this paper we present a novel Poisson graphical model, the first based on sum product networks, called PSPN, allowing for positive as well as negative dependencies. We present algorithms for learning tree PSPNs from data as well as for tractable inference via symbolic evaluation. With these, information-theoretic measures such as entropy, mutual information, and distances among count variables can be computed without resorting to approximations. Additionally, we show a connection between PSPNs and LDA, linking the structure of tree PSPNs to a hierarchy of topics. The experimental results on several synthetic and real world datasets demonstrate that PSPN often outperform state-of-the-art while remaining tractable.


The Symbolic Interior Point Method

AAAI Conferences

Numerical optimization is arguably the most prominent computational framework in machine learning and AI. It can be seen as an assembly language for hard combinatorial problems ranging from classification and regression in learning, to computing optimal policies and equilibria in decision theory, to entropy minimization in information sciences. Unfortunately, specifying such problems in complex domains involving relations, objects and other logical dependencies is cumbersome at best, requiring considerable expert knowledge, and solvers require models to be painstakingly reduced to standard forms. To overcome this, we introduce a rich modeling framework for optimization problems that allows convenient codification of symbolic structure. Rather than reducing this symbolic structure to a sparse or dense matrix, we represent and exploit it directly using algebraic decision diagrams (ADDs). Combining efficient ADD-based matrix-vector algebra with a matrix-free interior-point method, we develop an engine that can fully leverage the structure of symbolic representations to solve convex linear and quadratic optimization problems. We demonstrate the flexibility of the resulting symbolic-numeric optimizer on decision making and compressed sensing tasks with millions of non-zero entries.


Propositional Probabilistic Reasoning at Maximum Entropy Modulo Theories

AAAI Conferences

The principle of maximum entropy (MaxEnt principle) provides a valuable methodology for reasoning with probabilistic conditional knowledge bases realizing an idea of information economy in the sense of adding a minimal amount of assumed information. The conditional structure of such a knowledge base allows for classifying possible worlds regarding their influence on the MaxEnt distribution. In this paper, we present an algorithm that determines these equivalence classes and computes their cardinality by performing satisfiability tests of propositional formulas built upon the premises and conclusions of the conditionals. An example illustrates how the output of our algorithm can be used to simplify calculations when drawing nonmonotonic inferences under maximum entropy. For this, we use a characterization of the MaxEnt distribution in terms of conditional structure that completely abstracts from the propositional logic underlying the conditionals.


Parallelized Hitting Set Computation for Model-Based Diagnosis

AAAI Conferences

Model-Based Diagnosis techniques have been successfully applied to support a variety of fault-localization tasks both for hardware and software artifacts. In many applications, Reiter's hitting set algorithm has been used to determine the set of all diagnoses for a given problem. In order to construct the diagnoses with increasing cardinality, Reiter proposed a breadth-first search scheme in combination with different tree-pruning rules. Since many of today's computing devices have multi-core CPU architectures, we propose techniques to parallelize the construction of the tree to better utilize the computing resources without losing any diagnoses. Experimental evaluations using different benchmark problems show that parallelization can help to significantly reduce the required running times. Additional simulation experiments were performed to understand how the characteristics of the underlying problem structure impact the achieved performance gains.


A Comparison of Playlist Generation Strategies for Music Recommendation and a New Baseline Scheme

AAAI Conferences

The digitalization of music and the instant availability of millions of tracks on the Internet require new approaches to support the user in the exploration of these huge music collections. One possible approach to address this problem, which can also be found on popular online music platforms, is the use of user-created or automatically generated playlists (mixes). The automated generation of such playlists represents a particular type of the music recommendation problem with two special characteristics. First, the tracks of the list are usually consumed immediately at recommendation time; secondly, songs are listened to mostly in consecutive order so that the sequence of the recommended tracks can be relevant. In the past years, a number of different approaches for playlist generation have been proposed in the literature. In this paper, we review the existing core approaches to playlist generation, discuss aspects of appropriate offline evaluation designs and report the results of a comparative evaluation based on different datasets. Based on the insights from these experiments, we propose a comparably simple and computationally tractable new baseline algorithm for future comparisons, which is based on track popularity and artist information and is competitive with more sophisticated techniques in our evaluation settings.


Perfect Hashing for State Space Exploration on the GPU

AAAI Conferences

This paper exploits parallel computing power of graphics cards to accelerate state space search. We illustrate that modern graphics processing units (GPUs) have the potential to speed up breadth-first search significantly. For a bitvector representation of the search frontier, GPU algorithms with one and two bits per state are presented. Efficient perfect hash functions and their inverse are explored in order to achieve enhanced compression. We report maximal speed-ups of up to a factor of 27 wrt. single core CPU computation.