Goto

Collaborating Authors

 Technion, Israel Institute of Technology


Predicting Decisions in Language Based Persuasion Games

Journal of Artificial Intelligence Research

Sender-receiver interactions, and specifically persuasion games, are widely researched in economic modeling and artificial intelligence, and serve as a solid foundation for powerful applications. However, in the classic persuasion games setting, the messages sent from the expert to the decision-maker are abstract or well-structured application-specific signals rather than natural (human) language messages, although natural language is a very common communication signal in real-world persuasion setups. This paper addresses the use of natural language in persuasion games, exploring its impact on the decisions made by the players and aiming to construct effective models for the prediction of these decisions. For this purpose, we conduct an online repeated interaction experiment. At each trial of the interaction, an informed expert aims to sell an uninformed decision-maker a vacation in a hotel, by sending her a review that describes the hotel. While the expert is exposed to several scored reviews, the decision-maker observes only the single review sent by the expert, and her payoff in case she chooses to take the hotel is a random draw from the review score distribution available to the expert only. The expert’s payoff, in turn, depends on the number of times the decision-maker chooses the hotel. We also compare the behavioral patterns in this experiment to the equivalent patterns in similar experiments where the communication is based on the numerical values of the reviews rather than the reviews’ text, and observe substantial differences which can be explained through an equilibrium analysis of the game. We consider a number of modeling approaches for our verbal communication setup, differing from each other in the model type (deep neural network (DNN) vs. linear classifier), the type of features used by the model (textual, behavioral or both) and the source of the textual features (DNN-based vs. hand-crafted). Our results demonstrate that given a prefix of the interaction sequence, our models can predict the future decisions of the decision-maker, particularly when a sequential modeling approach and hand-crafted textual features are applied. Further analysis of the hand-crafted textual features allows us to make initial observations about the aspects of text that drive decision making in our setup.


Predicting Strategic Behavior from Free Text

Journal of Artificial Intelligence Research

The connection between messaging and action is fundamental both to web applications, such as web search and sentiment analysis, and to economics. However, while prominent online applications exploit messaging in natural (human) language in order to predict non-strategic action selection, the economics literature focuses on the connection between structured stylized messaging to strategic decisions in games and multi-agent encounters. This paper aims to connect these two strands of research, which we consider highly timely and important due to the vast online textual communication on the web. Particularly, we introduce the following question: Can free text expressed in natural language serve for the prediction of action selection in an economic context, modeled as a game? In order to initiate the research on this question, we introduce the study of an individual's action prediction in a one-shot game based on free text he/she provides, while being unaware of the game to be played. We approach the problem by attributing commonsensical personality attributes via crowd-sourcing to free texts written by individuals, and employing transductive learning to predict actions taken by these individuals in one-shot games based on these attributes. Our approach allows us to train a single classifier that can make predictions with respect to actions taken in multiple games. In experiments with three well-studied games, our algorithm compares favorably with strong alternative approaches. In ablation analysis, we demonstrate the importance of our modeling choices--the representation of the text with the commonsensical personality attributes and our classifier--to the predictive power of our model.


Finite Sample Analyses for TD(0) With Function Approximation

AAAI Conferences

TD(0) is one of the most commonly used algorithms in reinforcement learning. Despite this, there is no existing finite sample analysis for TD(0) with function approximation, even for the linear case. Our work is the first to provide such results. Existing convergence rates for Temporal Difference (TD) methods apply only to somewhat modified versions, e.g., projected variants or ones where stepsizes depend on unknown problem parameters. Our analyses obviate these artificial alterations by exploiting strong properties of TD(0). We provide convergence rates both in expectation and with high-probability. The two are obtained via different approaches that use relatively unknown, recently developed stochastic approximation techniques.