Goto

Collaborating Authors

 Rensselaer Polytechnic Institute


Vote Until Two of You Agree: Mechanisms with Small Distortion and Sample Complexity

AAAI Conferences

To design social choice mechanisms with desirable utility properties, normative properties, and low sample complexity, we propose a new randomized mechanism called 2-Agree. This mechanism asks random voters for their top alternatives until at least two voters agree, at which point it selects that alternative as the winner. We prove that, despite its simplicity and low sample complexity, 2-Agree achieves almost optimal distortion on a metric space when the number of alternatives is not large, and satisfies anonymity, neutrality, ex-post Pareto efficiency, very strong SD-participation, and is approximately truthful. We further show that 2-Agree works well for larger number of alternatives with decisive agents.


Mechanism Design for Multi-Type Housing Markets

AAAI Conferences

We study multi-type housing markets, where there are p โ‰ฅ 2 types of items, each agent is initially endowed one item of each type, and the goal is to design mechanisms without monetary transfer to (re)allocate items to the agents based on their preferences over bundles of items, such that each agent gets one item of each type. In sharp contrast to classical housing markets, previous studies in multi-type housing markets have been hindered by the lack of natural solution concepts, because the strict core might be empty. We break the barrier in the literature by leveraging AI techniques and making natural assumptions on agentsโ€™ preferences. We show that when agentsโ€™ preferences are lexicographic, even with different importance orders, the classical top-trading-cycles mechanism can be extended while preserving most of its nice properties. We also investigate computational complexity of checking whether an allocation is in the strict core and checking whether the strict core is empty. Our results convey an encouragingly positive message: it is possible to design good mechanisms for multi-type housing markets under natural assumptions on preferences.


Differentiating Between Posed and Spontaneous Expressions with Latent Regression Bayesian Network

AAAI Conferences

Spatial patterns embedded in human faces are crucial for differentiating posed expressions from spontaneous ones, yet they have not been thoroughly exploited in the literature. To tackle this problem, we present a generative model, i.e., Latent Regression Bayesian Network (LRBN), to effectively capture the spatial patterns embedded in facial landmark points to differentiate between posed and spontaneous facial expressions. The LRBN is a directed graphical model consisting of one latent layer and one visible layer. Due to the โ€œexplaining awayโ€œ effect in Bayesian networks, LRBN is able to capture both the dependencies among the latent variables given the observation and the dependencies among visible variables. We believe that such dependencies are crucial for faithful data representation. Specifically, during training, we construct two LRBNs to capture spatial patterns inherent in displacements of landmark points from spontaneous facial expressions and posed facial expressions respectively. During testing, the samples are classified into posed or spontaneous expressions according to their likelihoods on two models. Efficient learning and inference algorithms are proposed. Experimental results on two benchmark databases demonstrate the advantages of the proposed approach in modeling spatial patterns as well as its superior performance to the existing methods in differentiating between posed and spontaneous expressions.


Capturing Dependencies among Labels and Features for Multiple Emotion Tagging of Multimedia Data

AAAI Conferences

In this paper, we tackle the problem of emotion tagging of multimedia data by modeling the dependencies among multiple emotions in both the feature and label spaces. These dependencies, which carry crucial top-down and bottom-up evidence for improving multimedia affective content analysis, have not been thoroughly exploited yet. To this end, we propose two hierarchical models that independently and dependently learn the shared features and global semantic relationships among emotion labels to jointly tag multiple emotion labels of multimedia data. Efficient learning and inference algorithms of the proposed models are also developed. Experiments on three benchmark emotion databases demonstrate the superior performance of our methods to existing methods.


The 2015 AAAI Fall Symposium Series Reports

AI Magazine

The Association for the Advancement of Artificial Intelligence presented the 2015 Fall Symposium Series, on Thursday through Saturday, November 12-14, at the Westin Arlington Gateway in Arlington, Virginia. The titles of the six symposia were as follows: AI for Human-Robot Interaction, Cognitive Assistance in Government and Public Sector Applications, Deceptive and Counter-Deceptive Machines, Embedded Machine Learning, Self-Confidence in Autonomous Systems, and Sequential Decision Making for Intelligent Agents. This article contains the reports from four of the symposia.


The 2015 AAAI Fall Symposium Series Reports

AI Magazine

The Association for the Advancement of Artificial Intelligence presented the 2015 Fall Symposium Series, on Thursday through Saturday, November 12-14, at the Westin Arlington Gateway in Arlington, Virginia. The titles of the six symposia were as follows: AI for Human-Robot Interaction, Cognitive Assistance in Government and Public Sector Applications, Deceptive and Counter-Deceptive Machines, Embedded Machine Learning, Self-Confidence in Autonomous Systems, and Sequential Decision Making for Intelligent Agents. This article contains the reports from four of the symposia.


Quantitative Extensions of the Condorcet Jury Theorem with Strategic Agents

AAAI Conferences

The Condorcet Jury Theorem justifies the wisdom of crowds and lays the foundations of the ideology of the democratic regime. However, the Jury Theorem and most of its extensions focus on two alternatives and none of them quantitatively evaluate the effect of agentsโ€™ strategic behavior on the mechanismโ€™s truth-revealing power. We initiate a research agenda of quantitatively extend- ing the Jury Theorem with strategic agents by characterizing the price of anarchy (PoA) and the price of stability (PoS) of the common interest Bayesian voting games for three classes of mechanisms: plurality, MAPs, and the mechanisms that satisfy anonymity, neutrality, and strategy-proofness (w.r.t. a set of natural probabil- ity models). We show that while plurality and MAPs have better best-case truth-revealing power (lower PoS), the third class of mechanisms are more robust against agentsโ€™ strategic behavior (lower PoA).


Blind, Greedy, and Random: Algorithms for Matching and Clustering Using Only Ordinal Information

AAAI Conferences

We study the Maximum Weighted Matching problem in a partial information setting where the agents' utilities for being matched to other agents are hidden and the mechanism only has access to ordinal preference information. Our model is motivated by the fact that in many settings, agents cannot express the numerical values of their utility for different outcomes, but are still able to rank the outcomes in their order of preference. Specifically, we study problems where the ground truth exists in the form of a weighted graph, and look to design algorithms that approximate the true optimum matching using only the preference orderings for each agent (induced by the hidden weights) as input. If no restrictions are placed on the weights, then one cannot hope to do better than the simple greedy algorithm, which yields a half optimal matching. Perhaps surprisingly, we show that by imposing a little structure on the weights, we can improve upon the trivial algorithm significantly: we design a 1.6-approximation algorithm for instances where the hidden weights obey the metric inequality. Our algorithm is obtained using a simple but powerful framework that allows us to combine greedy and random techniques in unconventional ways. These results are the first non-trivial ordinal approximation algorithms for such problems, and indicate that we can design robust matchings even when we are agnostic to the precise agent utilities.


Learning Bayesian Networks with Bounded Tree-width via Guided Search

AAAI Conferences

Bounding the tree-width of a Bayesian network can reduce the chance of overfitting, and allows exact inference to be performed efficiently. Several existing algorithms tackle the problem of learning bounded tree-width Bayesian networks by learning from k-trees as super-structures, but they do not scale to large domains and/or large tree-width. We propose a guided search algorithm to find k-trees with maximum Informative scores, which is a measure of quality for the k-tree in yielding good Bayesian networks. The algorithm achieves close to optimal performance compared to exact solutions in small domains, and can discover better networks than existing approximate methods can in large domains. It also provides an optimal elimination order of variables that guarantees small complexity for later runs of exact inference. Comparisons with well-known approaches in terms of learning and inference accuracy illustrate its capabilities.


Pragmatic Querying in Heterogeneous Knowledge Graphs

AAAI Conferences

Knowledge Graphs with rich schemas can allow for complex querying. My thesis focuses on providing accessible Knowledge using Gricean notions of Cooperative Answering as a motivation. More specifically, using Query Reformulations, Data Awareness, and a Pragmatic Context, along with the results they can become more responsive to user requirements and user context.