Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Poznan University of Technology
Reports of the Workshops of the Thirty-First AAAI Conference on Artificial Intelligence
Anderson, Monica (University of Alabama) | Barták, Roman (Charles University) | Brownstein, John S. (Boston Children's Hospital, Harvard University) | Buckeridge, David L. (McGill University) | Eldardiry, Hoda (Palo Alto Research Center) | Geib, Christopher (Drexel University) | Gini, Maria (University of Minnesota) | Isaksen, Aaron (New York University) | Keren, Sarah (Technion University) | Laddaga, Robert (Vanderbilt University) | Lisy, Viliam (Czech Technical University) | Martin, Rodney (NASA Ames Research Center) | Martinez, David R. (MIT Lincoln Laboratory) | Michalowski, Martin (University of Ottawa) | Michael, Loizos (Open University of Cyprus) | Mirsky, Reuth (Ben-Gurion University) | Nguyen, Thanh (University of Michigan) | Paul, Michael J. (University of Colorado Boulder) | Pontelli, Enrico (New Mexico State University) | Sanner, Scott (University of Toronto) | Shaban-Nejad, Arash (University of Tennessee) | Sinha, Arunesh (University of Michigan) | Sohrabi, Shirin (IBM T. J. Watson Research Center) | Sricharan, Kumar (Palo Alto Research Center) | Srivastava, Biplav (IBM T. J. Watson Research Center) | Stefik, Mark (Palo Alto Research Center) | Streilein, William W. (MIT Lincoln Laboratory) | Sturtevant, Nathan (University of Denver) | Talamadupula, Kartik (IBM T. J. Watson Research Center) | Thielscher, Michael (University of New South Wales) | Togelius, Julian (New York University) | Tran, So Cao (New Mexico State University) | Tran-Thanh, Long (University of Southampton) | Wagner, Neal (MIT Lincoln Laboratory) | Wallace, Byron C. (Northeastern University) | Wilk, Szymon (Poznan University of Technology) | Zhu, Jichen (Drexel University)
Reports of the Workshops of the Thirty-First AAAI Conference on Artificial Intelligence
Anderson, Monica (University of Alabama) | Barták, Roman (Charles University) | Brownstein, John S. (Boston Children's Hospital, Harvard University) | Buckeridge, David L. (McGill University) | Eldardiry, Hoda (Palo Alto Research Center) | Geib, Christopher (Drexel University) | Gini, Maria (University of Minnesota) | Isaksen, Aaron (New York University) | Keren, Sarah (Technion University) | Laddaga, Robert (Vanderbilt University) | Lisy, Viliam (Czech Technical University) | Martin, Rodney (NASA Ames Research Center) | Martinez, David R. (MIT Lincoln Laboratory) | Michalowski, Martin (University of Ottawa) | Michael, Loizos (Open University of Cyprus) | Mirsky, Reuth (Ben-Gurion University) | Nguyen, Thanh (University of Michigan) | Paul, Michael J. (University of Colorado Boulder) | Pontelli, Enrico (New Mexico State University) | Sanner, Scott (University of Toronto) | Shaban-Nejad, Arash (University of Tennessee) | Sinha, Arunesh (University of Michigan) | Sohrabi, Shirin (IBM T. J. Watson Research Center) | Sricharan, Kumar (Palo Alto Research Center) | Srivastava, Biplav (IBM T. J. Watson Research Center) | Stefik, Mark (Palo Alto Research Center) | Streilein, William W. (MIT Lincoln Laboratory) | Sturtevant, Nathan (University of Denver) | Talamadupula, Kartik (IBM T. J. Watson Research Center) | Thielscher, Michael (University of New South Wales) | Togelius, Julian (New York University) | Tran, So Cao (New Mexico State University) | Tran-Thanh, Long (University of Southampton) | Wagner, Neal (MIT Lincoln Laboratory) | Wallace, Byron C. (Northeastern University) | Wilk, Szymon (Poznan University of Technology) | Zhu, Jichen (Drexel University)
The AAAI-17 workshop program included 17 workshops covering a wide range of topics in AI. Workshops were held Sunday and Monday, February 4-5, 2017 at the Hilton San Francisco Union Square in San Francisco, California, USA. This report contains summaries of 12 of the workshops, and brief abstracts of the remaining 5
AFGuide System to Support Personalized Management of Atrial Fibrillation
Michalowski, Martin (MET Research Group) | Michalowski, Wojtek (University of Ottawa) | Wilk, Szymon (Poznan University of Technology) | O' (City, University of London) | Sullivan, Dympna (Ottawa Hospital Research Institute) | Carrier, Marc
Atrial fibrillation (AF), the most common arrhythmia with clinical significance, is a serious public health problem. Yet a number of studies show that current AF management is suboptimal due to a knowledge gap between primary care physicians and evidence-based treatment recommendations. This gap is caused by a number of barriers such as a lack of knowledge about new therapies, challenges associated with multi-morbidity, or a lack of patient engagement in therapy planning. The decision support tools proposed to address these barriers handle individual barriers but none of them tackle them comprehensively. Responding to this challenge, we propose AFGuide -- a clinical decision support system to educate and support primary care physicians in developing evidence-based and optimal AF therapies that take into account multi-morbid conditions and patient preferences. AFGuide relies on artificial intelligence techniques (logical reasoning) and preference modeling techniques, and combines them with mobile computing technologies. In this paper we present the design of the system and discuss its proposed implementation and evaluation.
Combining Ontology Class Expression Generation with Mathematical Modeling for Ontology Learning
Potoniec, Jedrzej (Poznan University of Technology) | Ławrynowicz, Agnieszka (Poznan University of Technology)
Using First-Order Logic to Represent Clinical Practice Guidelines and to Mitigate Adverse Interactions
Michalowski, Martin (Adventium Labs) | Wilk, Szymon (Poznan University of Technology) | Michalowski, Wojtek (University of Ottawa) | Tan, Xing (University of Ottawa) | Rosu, Daniela (University of Toronto)
Clinical practice guidelines (CPGs) were originally designed to help with evidence-based management of a single disease and such a single disease focus has impacted research on CPG computerization. This computerization is mostly concerned with supporting different representation formats and identifying potential inconsistencies in the definitions of CPGs. However, one of the biggest challenges facing physicians is the personalization of multiple CPGs to comorbid patients. Various research initiatives propose ways of mitigating adverse interactions in concurrently applied CPGs, however, there are no attempts to develop a generalized framework for mitigation that captures generic characteristics of the problem while handling nuances such as precedence relationships. In this paper we present our research towards developing a mitigation framework that relies on a first-order logic-based representation and related theorem proving and model finding techniques. The application of the proposed framework is illustrated with a simple clinical example.
Guiding Evolutionary Learning by Searching for Regularities in Behavioral Trajectories: A Case for Representation Agnosticism
Krawiec, Krzysztof (Poznan University of Technology) | Swan, Jerry (University of Stirling)
An intelligent agent can display behavior that is not directly related to the task it learns. Depending on the adopted AI framework and task formulation, such behavior is sometimes attributed to environment exploration, or ignored as irrelevant, or even penalized as undesired. We postulate here that virtually every interaction of an agent with its learning environment can result in outcomes that carry information which can be potentially exploited to solve the task. To support this claim, we present Pattern Guided Evolutionary Algorithm (PANGEA), an extension of genetic programming (GP), a genre of evolutionary computation that aims at synthesizing programs that display the desired input-output behavior. PANGEA uses machine learning to search for regularities in intermediate outcomes of program execution (which are ignored in standard GP), more specifically for relationships between these outcomes and the desired program output. The information elicited in this way is used to guide the evolutionary learning process by appropriately adjusting program fitness. An experiment conducted on a suite of benchmarks demonstrates that this architecture makes agent learning more effective than in conventional GP. In the paper, we discuss the possible generalizations and extensions of this architecture and its relationships with other contemporary paradigms like novelty search and deep learning. In conclusion, we extrapolate PANGEA to postulate a dynamic and behavioral learning framework for intelligent agents.