Goto

Collaborating Authors

 Microsoft Research, Redmond


Should Algorithms for Random SAT and Max-SAT Be Different?

AAAI Conferences

We analyze to what extent the random SAT and Max-SAT problems differ in their properties. Our findings suggest that for random k-CNF with ratio in a certain range, Max-SAT can be solved by any SAT algorithm with subexponential slowdown, while for formulae with ratios greater than some constant, algorithms under the random walk framework require substantially different heuristics. In light of these results, we propose a novel probabilistic approach for random Max-SAT called ProMS. Experimental results illustrate that ProMS outperforms many state-of-the-art local search solvers on random Max-SAT benchmarks.


Automatic Generation of Alternative Starting Positions for Simple Traditional Board Games

AAAI Conferences

Simple board games, like Tic-Tac-Toe and CONNECT-4, play an important role not only in the development of mathematical and logical skills, but also in the emotional and social development. In this paper, we address the problem of generating targeted starting positions for such games. This can facilitate new approaches for bringing novice players to mastery, and also leads to discovery of interesting game variants. We present an approach that generates starting states of varying hardness levels for player 1 in a two-player board game, given rules of the board game, the desired number of steps required for player 1 to win, and the expertise levels of the two players. Our approach leverages symbolic methods and iterative simulation to efficiently search the extremely large state space. We present experimental results that include discovery of states of varying hardness levels for several simple grid-based board games. The presence of such states for standard game variants like 4 x 4 Tic-Tac-Toe opens up new games to be played that have never been played as the default start state is heavily biased.


Lazy Paired Hyper-Parameter Tuning

AAAI Conferences

In virtually all machine learning applications, hyper-parameter tuning is required to maximize predictive accuracy. Such tuning is computationally expensive, and the cost is further exacerbated by the need for multiple evaluations (via cross-validation or bootstrap) at each configuration setting to guarantee statistically significant results. This paper presents a simple, general technique for improving the efficiency of hyper-parameter tuning by minimizing the number of resampled evaluations at each configuration. We exploit the fact that train-test samples can easily be \emph{matched} across candidate hyper-parameter configurations. This permits the use of paired hypothesis tests and power analysis that allow for statistically sound early elimination of suboptimal candidates to minimize the number of evaluations. Results on synthetic and real-world datasets demonstrate that our method improves over competitors for discrete parameter settings, and enhances state-of-the-art techniques for continuous parameter settings.


Happy, Nervous or Surprised? Classification of Human Affective States in Social Media

AAAI Conferences

Sentiment classification has been a well-investigated research area in the computational linguistics community. However, most of the research is primarily focused on detecting simply the polarity in text, often needing extensive manual labeling of ground truth. Additionally, little attention has been directed towards a finer analysis of human moods and affective states. Motivated by research in psychology, we propose and develop a classifier of several human affective states in social media. Starting with about 200 moods, we utilize mechanical turk studies to derive naturalistic signals from posts shared on Twitter about a variety of affects of individuals. This dataset is then deployed in an affect classification task with promising results. Our findings indicate that different types of affect involve different emotional content and usage styles; hence the performance of the classifier on various affects can differ considerably.


Not All Moods Are Created Equal! Exploring Human Emotional States in Social Media

AAAI Conferences

Emotional states of individuals, also known as moods, are central to the expression of thoughts, ideas and opinions, and in turn impact attitudes and behavior. As social media tools are increasingly used by individuals to broadcast their day-to-day happenings, or to report on an external event of interest, understanding the rich ‘landscape’ of moods will help us better interpret and make sense of the behavior of millions of individuals. Motivated by literature in psychology, we study a popular representation of human mood landscape, known as the ‘circumplex model’ that characterizes affective experience through two dimensions: valence and activation. We identify more than 200 moods frequent on Twitter, through mechanical turk studies and psychology literature sources, and report on four aspects of mood expression: the relationship between (1) moods and usage levels, including linguistic diversity of shared content (2) moods and the social ties individuals form, (3) moods and amount of network activity of individuals, and (4) moods and participatory patterns of individuals such as link sharing and conversational engagement. Our results provide at-scale naturalistic assessments and extensions of existing conceptualizations of human mood in social media contexts.