Goto

Collaborating Authors

 Microsoft Research, Cambridge


Incentivising Monitoring in Open Normative Systems

AAAI Conferences

We present an approach to incentivising monitoring for norm violations in open multi-agent systems such as Wikipedia. In such systems, there is no crisp definition of a norm violation; rather, it is a matter of judgement whether an agent's behaviour conforms to generally accepted standards of behaviour. Agents may legitimately disagree about borderline cases. Using ideas from scrip systems and peer prediction, we show how to design a mechanism that incentivises agents to monitor each other's behaviour for norm violations. The mechanism keeps the probability of undetected violations (submissions that the majority of the community would consider not conforming to standards) low, and is robust against collusion by the monitoring agents.


Indexable Probabilistic Matrix Factorization for Maximum Inner Product Search

AAAI Conferences

The Maximum Inner Product Search (MIPS) problem, prevalent in matrix factorization-based recommender systems, scales linearly with the number of objects to score. Recent work has shown that clever post-processing steps can turn the MIPS problem into a nearest neighbour one, allowing sublinear retrieval time either through Locality Sensitive Hashing or various tree structures that partition the Euclidian space. This work shows that instead of employing post-processing steps, substantially faster retrieval times can be achieved for the same accuracy when inference is not decoupled from the indexing process. By framing matrix factorization to be natively indexable, so that any solution is immediately sublinearly searchable, we use the machinery of Machine Learning to best learn such a solution. We introduce Indexable Probabilistic Matrix Factorization (IPMF) to shift the traditional post-processing complexity into the training phase of the model. Its inference procedure is based on Geodesic Monte Carlo, and adds minimal additional computational cost to standard Monte Carlo methods for matrix factorization. By coupling inference and indexing in this way, we achieve more than a 50% improvement in retrieval time against two state of the art methods, for a given level of accuracy in the recommendations of two large-scale recommender systems.


Extension Variables in QBF Resolution

AAAI Conferences

We investigate two QBF resolution systems that use extension variables: weak extended Q-resolution, where the extension variables are quantified at the innermost level, and extended Q-resolution, where the extension variables can be placed inside the quantifier prefix. These systems have been considered previously by Wintersteiger et al, who give experimental evidence that extended Q-resolution is stronger than weak extended Q-resolution. Here we prove an exponential separation between the two systems, thereby confirming the conjecture of Wintersteiger et al. Conceptually, this separation relies on showing strategy extraction for weak extended Q-resolution by bounded-depth circuits. In contrast, we show that this strong strategy extraction result fails in extended Q-resolution.


Hotspotting โ€” A Probabilistic Graphical Model For Image Object Localization Through Crowdsourcing

AAAI Conferences

Object localization is an image annotation task which consists of finding the location of a target object in an image. It is common to crowdsource annotation tasks and aggregate responses to estimate the true annotation. While for other kinds of annotations consensus is simple and powerful, it cannot be applied to object localization as effectively due to the task's rich answer space and inherent noise in responses. We propose a probabilistic graphical model to localize objects in images based on responses from the crowd. We improve upon natural aggregation methods such as the mean and the median by simultaneously estimating the difficulty level of each question and skill level of every participant. We empirically evaluate our model on crowdsourced data and show that our method outperforms simple aggregators both in estimating the true locations and in ranking participants by their ability. We also propose a simple adaptive sourcing scheme that works well for very sparse datasets.


Bandit-Based Search for Constraint Programming

AAAI Conferences

Constraint Programming (CP) solvers classically explore the solution space using tree-search based heuristics. Monte-Carlo Tree-Search (MCTS) is a tree-search method aimed at optimal sequential decision making under uncertainty. At the crossroads of CP and MCTS, this paper presents the Bandit Search for Constraint Programming (BASCOP) ย algorithm, adapting MCTS to the specifics of CP search trees. Formally, MCTS simultaneously estimates the average node reward, and uses it to bias the exploration towards the most promising regions of the tree, borrowing the multi-armed bandit (MAB) decision rule. The two contributions in BASCOP concern i) a specific reward function, estimating the relative failure depth conditionally to a (variable, value) assignment; ii) a new ย decision rule, hybridizing the MAB framework and the spirit of local neighborhood search. Specifically, BASCOP guides the CP search in the neighborhood of the previous best solution, by exploiting statistical estimates gathered across multiple restarts. BASCOP, using Gecode as the underlying constraint solver, shows significant improvements over the depth-first search baseline on some ย CP benchmark suites. For hard job-shop scheduling problems, BASCOP matches the results of state-of-the-art scheduling-specific CP approaches. These results demonstrate the potential of BASCOP as a generic yet robust search method for CP.


Congestion Games with Agent Failures

AAAI Conferences

We propose a natural model for agent failures in congestion games. In our model, each of the agents may fail to participate in the game, introducing uncertainty regarding the set of active agents. We examine how such uncertainty may change the Nash equilibria (NE) of the game. We prove that although the perturbed game induced by the failure model is not always a congestion game, it still admits at least one pure Nash equilibrium. Then, we turn to examine the effect of failures on the maximal social cost in any NE of the perturbed game. We show that in the limit case where failure probability is negligible new equilibria never emerge, and that the social cost may decrease but it never increases. For the case of non-negligible failure probabilities, we provide a full characterization of the maximal impact of failures on the social cost under worst-case equilibrium outcomes.


Seven Challenges in Parallel SAT Solving

AAAI Conferences

This paper provides a broad overview of the situation in the area of Parallel Search with a specific focus on Parallel SAT Solving. A set of challenges to researchers is presented which, we believe, must be met to ensure the practical applicability of Parallel SAT Solvers in the future. All these challenges are described informally, but put into perspective with related research results, and a (subjective) grading of difficulty for each of them is provided.