Goto

Collaborating Authors

 Microsoft Corporation


Disjunctive Program Synthesis: A Robust Approach to Programming by Example

AAAI Conferences

Programming by example (PBE) systems allow end users to easily create programs by providing a few input-output examples to specify their intended task. The system attempts to generate a program in a domain specific language (DSL) that satisfies the given examples. However, a key challenge faced by existing PBE techniques is to ensure the robustness of the programs that are synthesized from a small number of examples, as these programs often fail when applied to new inputs. This is because there can be many possible programs satisfying a small number of examples, and the PBE system has to somehow rank between these candidates and choose the correct one without any further information from the user. In this work we present a different approach to PBE in which the system avoids making a ranking decision at the synthesis stage, by instead synthesizing a disjunctive program that includes the many top-ranked programs as possible alternatives and selects between these different choices upon execution on a new input. This delayed choice brings the important benefit of comparing the possible outputs produced by the different disjuncts on a given input at execution time. We present a generic framework for synthesizing such disjunctive programs in arbitrary DSLs, and describe two concrete implementations of disjunctive synthesis in the practical domains of data extraction from plain text and HTML documents. We present an evaluation showing the significant increase in robustness achieved with our disjunctive approach, as illustrated by an increase from 59% to 93% of tasks for which correct programs can be learnt from a single example.


CD-CNN: A Partially Supervised Cross-Domain Deep Learning Model for Urban Resident Recognition

AAAI Conferences

Driven by the wave of urbanization in recent decades, the research topic about migrant behavior analysis draws great attention from both academia and the government. Nevertheless, subject to the cost of data collection and the lack of modeling methods, most of existing studies use only questionnaire surveys with sparse samples and non-individual level statistical data to achieve coarse-grained studies of migrant behaviors. In this paper, a partially supervised cross-domain deep learning model named CD-CNN is proposed for migrant/native recognition using mobile phone signaling data as behavioral features and questionnaire survey data as incomplete labels. Specifically, CD-CNN features in decomposing the mobile data into location domain and communication domain, and adopts a joint learning framework that combines two convolutional neural networks with a feature balancing scheme. Moreover, CD-CNN employs a three-step algorithm for training, in which the co-training step is of great value to partially supervised cross-domain learning. Comparative experiments on the city Wuxi demonstrate the high predictive power of CD-CNN. Two interesting applications further highlight the ability of CD-CNN for in-depth migrant behavioral analysis.


Automated Data Extraction Using Predictive Program Synthesis

AAAI Conferences

In recent years there has been rising interest in the use of programming-by-example techniques to assist users in data manipulation tasks. Such techniques rely on an explicit input-output examples specification from the user to automatically synthesize programs. However, in a wide range of data extraction tasks it is easy for a human observer to predict the desired extraction by just observing the input data itself. Such predictive intelligence has not yet been explored in program synthesis research, and is what we address in this work. We describe a predictive program synthesis algorithm that infers programs in a general form of extraction DSLs (domain specific languages) given input-only examples. We describe concrete instantiations of such DSLs and the synthesis algorithm in the two practical application domains of text extraction and web extraction, and present an evaluation of our technique on a range of extraction tasks encountered in practice.


Recovering Concept Prerequisite Relations from University Course Dependencies

AAAI Conferences

Prerequisite relations among concepts play an important role in many educational applications such as intelligent tutoring system and curriculum planning. With the increasing amount of educational data available, automatic discovery of concept prerequisite relations has become both an emerging research opportunity and an open challenge. Here, we investigate how to recover concept prerequisite relations from course dependencies and propose an optimization based framework to address the problem. We create the first real dataset for empirically studying this problem, which consists of the listings of computer science courses from 11 U.S. universities and their concept pairs with prerequisite labels. Experiment results on a synthetic dataset and the real course dataset both show that our method outperforms existing baselines.


Predicting Group Success in Meetup

AAAI Conferences

Success of groups in Meetup is of utmost importance for members who organize them. However, measures of group success in Meetup is quite vague till now. In this paper, we take a step to quantify the success of Meetup groups. Driven by a comprehensive study of our Meetup dataset, we handpick a set of key properties which can potentially regulate a groupโ€™s success. Finally, we develop a machine learning model leveraging on these features which can predict success of Meetup groups early with high accuracy.


The Dialog State Tracking Challenge Series

AI Magazine

Dialog state tracking is difficult because automatic speech recognition (ASR) and spoken language understanding (SLU) errors are common and can cause the system to misunderstand the user. At the same time, state tracking is crucial because the system relies on the estimated dialog state to choose actions -- for example, which restaurants to suggest. Figure 1 shows an illustration of the dialog state tracking task. Historically dialog state tracking has been done with handcrafted rules. More recently, statistical methods have been found to be superior by effectively overcoming some SLU errors, resulting in better dialogs. Despite this progress, direct comparisons between methods have not been possible because past studies use different domains, system components, and evaluation measures, hindering progresss.


Large Scale Online Kernel Classification

AAAI Conferences

In this work, we present a new framework for large scale online kernel classification, making kernel methods efficient and scalable for large-scale online learning tasks. Unlike the regular budget kernel online learning scheme that usually uses different strategies to bound the number of support vectors, our framework explores a functional approximation approach to approximating a kernel function/matrix in order to make the subsequent online learning task efficient and scalable. Specifically, we present two different online kernel machine learning algorithms: (i) the Fourier Online Gradient Descent (FOGD) algorithm that applies the random Fourier features for approximating kernel functions; and (ii) the Nystrom Online Gradient Descent (NOGD) algorithm that applies the Nystrom method to approximate large kernel matrices. We offer theoretical analysis of the proposed algorithms, and conduct experiments for large-scale online classification tasks with some data set of over 1 million instances. Our encouraging results validate the effectiveness and efficiency of the proposed algorithms, making them potentially more practical than the family of existing budget kernel online learning approaches.