Goto

Collaborating Authors

 Microsoft


Deep Reinforcement Learning That Matters

AAAI Conferences

In recent years, significant progress has been made in solving challenging problems across various domains using deep reinforcement learning (RL). Reproducing existing work and accurately judging the improvements offered by novel methods is vital to sustaining this progress. Unfortunately, reproducing results for state-of-the-art deep RL methods is seldom straightforward. In particular, non-determinism in standard benchmark environments, combined with variance intrinsic to the methods, can make reported results tough to interpret. Without significance metrics and tighter standardization of experimental reporting, it is difficult to determine whether improvements over the prior state-of-the-art are meaningful. In this paper, we investigate challenges posed by reproducibility, proper experimental techniques, and reporting procedures. We illustrate the variability in reported metrics and results when comparing against common baselines and suggest guidelines to make future results in deep RL more reproducible. We aim to spur discussion about how to ensure continued progress in the field by minimizing wasted effort stemming from results that are non-reproducible and easily misinterpreted.


Comparing Population Means Under Local Differential Privacy: With Significance and Power

AAAI Conferences

A statistical hypothesis test determines whether a hypothesis should be rejected based on samples from populations. In particular, randomized controlled experiments (or A/B testing) that compare population means using, e.g., t-tests, have been widely deployed in technology companies to aid in making data-driven decisions. Samples used in these tests are collected from users and may contain sensitive information. Both the data collection and the testing process may compromise individualsโ€™ privacy. In this paper, we study how to conduct hypothesis tests to compare population means while preserving privacy. We use the notation of local differential privacy (LDP), which has recently emerged as the main tool to ensure each individualโ€™s privacy without the need of a trusted data collector. We propose LDP tests that inject noise into every userโ€™s data in the samples before collecting them (so users do not need to trust the data collector), and draw conclusions with bounded type-I (significance level) and type-II errors (1 - power). Our approaches can be extended to the scenario where some users require LDP while some are willing to provide exact data. We report experimental results on real-world datasets to verify the effectiveness of our approaches.


SPOT Poachers in Action: Augmenting Conservation Drones With Automatic Detection in Near Real Time

AAAI Conferences

The unrelenting threat of poaching has led to increased development of new technologies to combat it. One such example is the use of long wave thermal infrared cameras mounted on unmanned aerial vehicles (UAVs or drones) to spot poachers at night and report them to park rangers before they are able to harm animals. However, monitoring the live video stream from these conservation UAVs all night is an arduous task. Therefore, we build SPOT (Systematic POacher deTector), a novel application that augments conservation drones with the ability to automatically detect poachers and animals in near real time. SPOT illustrates the feasibility of building upon state-of-the-art AI techniques, such as Faster RCNN, to address the challenges of automatically detecting animals and poachers in infrared images. This paper reports (i) the design and architecture of SPOT, (ii) a series of efforts towards more robust and faster processing to make SPOT usable in the field and provide detections in near real time, and (iii) evaluation of SPOT based on both historical videos and a real-world test run by the end users in the field. The promising results from the test in the field have led to a plan for larger-scale deployment in a national park in Botswana. While SPOT is developed for conservation drones, its design and novel techniques have wider application for automated detection from UAV videos.


Building Task-Oriented Dialogue Systems for Online Shopping

AAAI Conferences

We present a general solution towards building task-oriented dialogue systems for online shopping, aiming to assist online customers in completing various purchase-related tasks, such as searching products and answering questions, in a natural language conversation manner. As a pioneering work, we show what & how existing NLP techniques, data resources, and crowdsourcing can be leveraged to build such task-oriented dialogue systems for E-commerce usage. To demonstrate its effectiveness, we integrate our system into a mobile online shopping app. To the best of our knowledge, this is the first time that an AI bot in Chinese is practically used in online shopping scenario with millions of real consumers. Interesting and insightful observations are shown in the experimental part, based on the analysis of human-bot conversation log. Several current challenges are also pointed out as our future directions.


Low-Rank Factorization of Determinantal Point Processes

AAAI Conferences

Determinantal point processes (DPPs) have garnered attention as an elegant probabilistic model of set diversity. They are useful for a number of subset selection tasks, including product recommendation. DPPs are parametrized by a positive semi-definite kernel matrix. In this work we present a new method for learning the DPP kernel from observed data using a low-rank factorization of this kernel. We show that this low-rank factorization enables a learning algorithm that is nearly an order of magnitude faster than previous approaches, while also providing for a method for computing product recommendation predictions that is far faster (up to 20x faster or more for large item catalogs) than previous techniques that involve a full-rank DPP kernel. Furthermore, we show that our method provides equivalent or sometimes better test log-likelihood than prior full-rank DPP approaches.



Turn-Taking and Coordination in Human-Machine Interaction

AI Magazine

This issue of AI Magazine brings together a collection of articles on challenges, mechanisms, and research progress in turn-taking and coordination between humans and machines. The contributing authors work in interrelated fields of spoken dialog systems, intelligent virtual agents, human-computer interaction, human-robot interaction, and semiautonomous collaborative systems and explore core concepts in coordinating speech and actions with virtual agents, robots, and other autonomous systems. Several of the contributors participated in the AAAI Spring Symposium on Turn-Taking and Coordination in Human-Machine Interaction, held in March 2015, and several articles in this issue are extensions of work presented at that symposium. The articles in the collection address key modeling, methodological, and computational challenges in achieving effective coordination with machines, propose solutions that overcome these challenges under sensory, cognitive, and resource restrictions, and illustrate how such solutions can facilitate coordination across diverse and challenging domains. The contributions highlight turn-taking and coordination in human-machine interaction as an emerging and evolving research area with important implications for future applications of AI.


Predicting Gaming Related Properties from Twitter Accounts

AAAI Conferences

We demonstrate a system for predicting gaming related properties from Twitter accounts. Our system predicts various traits of users based on the tweets publicly available in their profiles. Such inferred traits include degrees of tech-savviness and knowledge on computer games, actual gaming performance, preferred platform, degree of originality, humor and influence on others. Our system is based on machine learning models trained on crowd-sourced data. It allows people to select Twitter accounts of their fellow gamers, examine the trait predictions made by our system, and the main drivers of these predictions. We present empirical results on the performance of our system based on its accuracy on our crowd-sourced dataset.


Letter to the Editor: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter

AI Magazine

The adoption of probabilistic and decision-theoretic representations and statistical learning methods has led to a large degree of integration and cross-fertilization among AI, machine learning, statistics, control theory, neuroscience, and other fields. The progress in AI research makes it timely to focus research not only on making AI more capable, but also on maximizing the societal benefit of AI. We recommend expanded research aimed at ensuring that increasingly capable AI systems are robust and beneficial: our AI systems must do what we want them to do. In summary, we believe that research on how to make AI systems robust and beneficial is both important and timely, and that there are concrete research directions that can be pursued today.


Letter to the Editor: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter

AI Magazine

Artificial intelligence (AI) research has explored a variety of problems and approaches since its inception, but for the last 20 years or so has been focused on the problems surrounding the construction of intelligent agents โ€” systems that perceive and act in some environment. In this context, "intelligence" is related to statistical and economic notions of rationality โ€” colloquially, the ability to make good decisions, plans, or inferences. The adoption of probabilistic and decision-theoretic representations and statistical learning methods has led to a large degree of integration and cross-fertilization among AI, machine learning, statistics, control theory, neuroscience, and other fields. The establishment of shared theoretical frameworks, combined with the availability of data and processing power, has yielded remarkable successes in various component tasks such as speech recognition, image classification, autonomous vehicles, machine translation, legged locomotion, and question-answering systems. As capabilities in these areas and others cross the threshold from laboratory research to economically valuable technologies, a virtuous cycle takes hold whereby even small improvements in performance are worth large sums of money, prompting greater investments in research. There is now a broad consensus that AI research is progressing steadily, and that its impact on society is likely to increase. The potential benefits are huge, since everything that civilization has to offer is a product of human intelligence; we cannot predict what we might achieve when this intelligence is magnified by the tools AI may provide, but the eradication of disease and poverty are not unfathomable. Because of the great potential of AI, it is important to research how to reap its benefits while avoiding potential pitfalls. The progress in AI research makes it timely to focus research not only on making AI more capable, but also on maximizing the societal benefit of AI. Such considerations motivated the AAAI 2008โ€“09 Presidential Panel on Long-Term AI Futures and other projects on AI impacts, and constitute a significant expansion of the field of AI itself, which up to now has focused largely on techniques that are neutral with respect to purpose. We recommend expanded research aimed at ensuring that increasingly capable AI systems are robust and beneficial: our AI systems must do what we want them to do. The attached research priorities document [see page X] gives many examples of such research directions that can help maximize the societal benefit of AI. This research is by necessity interdisciplinary, because it involves both society and AI. It ranges from economics, law and philosophy to computer security, formal methods and, of course, various branches of AI itself. In summary, we believe that research on how to make AI systems robust and beneficial is both important and timely, and that there are concrete research directions that can be pursued today.