Goto

Collaborating Authors

 McMaster University


Hybrid Queueing Theory and Scheduling Models for Dynamic Environments with Sequence-Dependent Setup Times

AAAI Conferences

Classically, scheduling research in artificial intelligence has concentrated on the combinatorial challenges arising in a large, static domain where the set of jobs, resource capacities, and other problem parameters are known with certainty and do not change. In contrast, queueing theory has focused primarily on the stochastic arrival and resource requirements of new jobs, de-emphasizing the combinatorics. We study a dynamic parallel scheduling problem with sequence-dependent setup times: arriving jobs must be assigned (online) to one of a set of resources. The jobs have different service times on different resources and there exist setup times that are required to elapse between jobs, depending on both the resource used and the job sequence. We investigate four models that hybridize a scheduling model with techniques from queueing theory to address the dynamic problem. We demonstrate that one of the hybrid models can significantly reduce observed mean flow time performance when compared to the pure scheduling and queueing theory methods. More specifically, at high system loads, our hybrid model achieves a 15% to 60% decrease in mean flow time compared to the pure methodologies. This paper illustrates the advantages of integrating techniques from queueing theory and scheduling to improve performance in dynamic problems with complex combinatorics.


Long-Run Stability in Dynamic Scheduling

AAAI Conferences

Stability analysis consists of identifying conditions under which the number of jobs in a system is guaranteed to remain bounded over time. To date, such long-run performance guarantees have not been available for periodic approaches to dynamic scheduling problems. However, stability has been extensively studied in queueing theory. In this paper, we introduce stability to the dynamic scheduling literature and demonstrate that stability guarantees can be obtained for methods that build the schedule for a dynamic problem by periodically solving static deterministic sub-problems. Specifically, we analyze the stability of two dynamic environments: a two-machine flow shop, which has received significant attention in scheduling research, and a polling system with a flow-shop server, an extension of systems typically considered in queueing. We demonstrate that, among stable policies, methods based on periodic optimization of static schedules may achieve better mean flow times than traditional queueing approaches.