Goto

Collaborating Authors

 Marshfield Clinic


A Preliminary Investigation into Predictive Models for Adverse Drug Events

AAAI Conferences

Adverse drug events are a leading cause of danger and cost in health care. We could reduce both the danger and the cost if we had accurate models to predict, at prescription time for each drug, which patients are most at risk for known adverse reactions to that drug, such as myocardial infarction (MI, or "heart attack") if given a Cox2 inhibitor, angioedema if given an ACE inhibitor, or bleeding if given an anticoagulant such as Warfarin. We address this task for the specific case of Cox2 inhibitors, a type of non-steroidal anti-inflammatory drug (NSAID) or pain reliever that is easier on the gastrointestinal system than most NSAIDS. Because of the MI adverse drug reaction, some but not all very effective Cox2 inhibitors were removed from the market. Specifically, we use machine learning to predict which patients on a Cox2 inhibitor would suffer an MI. An important issue for machine learning is that we do not know which of these patients might have suffered an MI even without the drug. To begin to make some headway on this important problem, we compare our predictive model for MI for patients on Cox2 inhibitors against a more general model for predicting MI among a broader population not on Cox2 inhibitors.


Identifying Adverse Drug Events by Relational Learning

AAAI Conferences

The pharmaceutical industry, consumer protection groups, users of medications and government oversight agencies are all strongly interested in identifying adverse reactions to drugs. While a clinical trial of a drug may use only a thousand patients, once a drug is released on the market it may be taken by millions of patients. As a result, in many cases adverse drug events (ADEs) are observed in the broader population that were not identified during clinical trials. Therefore, there is a need for continued, postmarketing surveillance of drugs to identify previously-unanticipated ADEs. This paper casts this problem as a reverse machine learning task, related to relational subgroup discovery and provides an initial evaluation of this approach based on experiments with an actual EMR/EHR and known adverse drug events.