Macquarie University
Image Captioning using Facial Expression and Attention
Mohamad Nezami, Omid (Macquarie University) | Dras, Mark | Wan, Stephen | Paris, Cecile
Benefiting from advances in machine vision and natural language processing techniques, current image captioning systems are able to generate detailed visual descriptions. For the most part, these descriptions represent an objective characterisation of the image, although some models do incorporate subjective aspects related to the observer's view of the image, such as sentiment; current models, however, usually do not consider the emotional content of images during the caption generation process. This paper addresses this issue by proposing novel image captioning models which use facial expression features to generate image captions. The models generate image captions using long short-term memory networks applying facial features in addition to other visual features at different time steps. We compare a comprehensive collection of image captioning models with and without facial features using all standard evaluation metrics. The evaluation metrics indicate that applying facial features with an attention mechanism achieves the best performance, showing more expressive and more correlated image captions, on an image caption dataset extracted from the standard Flickr 30K dataset, consisting of around 11K images containing faces. An analysis of the generated captions finds that, perhaps unexpectedly, the improvement in caption quality appears to come not from the addition of adjectives linked to emotional aspects of the images, but from more variety in the actions described in the captions.
Social Recommendation with an Essential Preference Space
Liu, Chun-Yi (University of Chinese Academy of Sciences) | Zhou, Chuan (University of Chinese Academy of Sciences) | Wu, Jia (Macquarie University) | Hu, Yue (University of Chinese Academy of Sciences) | Guo, Li (University of Chinese Academy of Sciences)
Social recommendation, which aims to exploit social information to improve the quality of a recommender system, has attracted an increasing amount of attention in recent years. A large portion of existing social recommendation models are based on the tractable assumption that users consider the same factors to make decisions in both recommender systems and social networks. However, this assumption is not in concert with real-world situations, since users usually show different preferences in different scenarios. In this paper, we investigate how to exploit the differences between user preference in recommender systems and that in social networks, with the aim to further improve the social recommendation. In particular, we assume that the user preferences in different scenarios are results of different linear combinations from a more underlying user preference space. Based on this assumption, we propose a novel social recommendation framework, called social recommendation with an essential preferences space (SREPS), which simultaneously models the structural information in the social network, the rating and the consumption information in the recommender system under the capture of essential preference space. Experimental results on four real-world datasets demonstrate the superiority of the proposed SREPS model compared with seven state-of-the-art social recommendation methods.
Topic Segmentation with an Ordering-Based Topic Model
Du, Lan (Macquarie University) | Pate, John K. (Macquarie University) | Johnson, Mark (Macquarie University)
Documents from the same domain usually discuss similar topics in a similar order. However, the number of topics and the exact topics discussed in each individual document can vary. In this paper we present a simple topic model that uses generalised Mallows models and incomplete topic orderings to incorporate this ordering regularity into the probabilistic generative process of the new model. We show how to reparameterise the new model so that a point-wise sampling algorithm from the Bayesian word segmentation literature can be used for inference. This algorithm jointly samples not only the topic orders and the topic assignments but also topic segmentations of documents. Experimental results show that our model performs significantly better than the other ordering-based topic models on nearly all the corpora that we used, and competitively with other state-of-the-art topic segmentation models on corpora that have a strong ordering regularity.
Trust Prediction with Propagation and Similarity Regularization
Zheng, Xiaoming (Macquarie University) | Wang, Yan (Macquarie University) | Orgun, Mehmet A. (Macquarie University) | Zhong, Youliang (Macquarie University) | Liu, Guanfeng (Soochow University)
Online social networks have been used for a variety of rich activities in recent years, such as investigating potential employees and seeking recommendations of high quality services and service providers. In such activities, trust is one of the most critical factors for the decision-making of users. In the literature, the state-of-the-art trust prediction approaches focus on either dispositional trust tendency and propagated trust of the pair-wise trust relationships along a path or the similarity of trust rating values. However, there are other influential factors that should be taken into account, such as the similarity of the trust rating distributions. In addition, tendency, propagated trust and similarity are of different types, as either personal properties or interpersonal properties. But the difference has been neglected in existing models. Therefore, in trust prediction, it is necessary to take all the above factors into consideration in modeling, and process them separately and differently. In this paper we propose a new trust prediction model based on trust decomposition and matrix factorization, considering all the above influential factors and differentiating both personal and interpersonal properties. In this model, we first decompose trust into trust tendency and tendency-reduced trust. Then, based on tendency-reduced trust ratings, matrix factorization with a regularization term is leveraged to predict the tendency-reduced values of missing trust ratings, incorporating both propagated trust and the similarity of users' rating habits. In the end, the missing trust ratings are composed with predicted tendency-reduced values and trust tendency values. Experiments conducted on a real-world dataset illustrate significant improvement delivered by our approach in trust prediction accuracy over the state-of-the-art approaches.
Context-Aware Collaborative Topic Regression with Social Matrix Factorization for Recommender Systems
Chen, Chaochao (Zhejiang University) | Zheng, Xiaolin (Zhejiang University) | Wang, Yan (Macquarie University) | Hong, Fuxing (Zhejiang University) | Lin, Zhen (Zhejiang University)
Online social networking sites have become popular platforms on which users can link with each other and share information, not only basic rating information but also information such as contexts, social relationships, and item contents. However, as far as we know, no existing works systematically combine diverse types of information to build more accurate recommender systems. In this paper, we propose a novel context-aware hierarchical Bayesian method. First, we propose the use of spectral clustering for user-item subgrouping, so that users and items in similar contexts are grouped. We then propose a novel hierarchical Bayesian model that can make predictions for each user-item subgroup, our model incorporate not only topic modeling to mine item content but also social matrix factorization to handle ratings and social relationships. Experiments on an Epinions dataset show that our method significantly improves recommendation performance compared with six categories of state-of-the-art recommendation methods in terms of both prediction accuracy and recall. We have also conducted experiments to study the extent to which ratings, contexts, social relationships, and item contents contribute to recommendation performance in terms of prediction accuracy and recall.
Optimal Social Trust Path Selection in Complex Social Networks
Liu, Guanfeng (Macquarie University) | Wang, Yan (Macquarie University) | Orgun, Mehmet A (Macquarie University)
Online social networks are becoming increasingly popular and are being used as the means for a variety of rich activities. This demands the evaluation of the trustworthiness between two unknown participants along a certain social trust path between them in the social network. However, there are usually many social trust paths between participants. Thus, a challenging problem is finding which social trust path is the optimal one that can yield the most trustworthy evaluation result. In this paper, we first present a new complex social network structure and a new concept of Quality of Trust (QoT) to illustrate the ability to guarantee a certain level of trustworthiness in trust evaluation. We then model the optimal social trust path selection as a Multi-Constrained Optimal Path (MCOP) selection problem which is NP-Complete. For solving this problem, we propose an efficient approximation algorithm MONTE K based on the Monte Carlo method. The results of our experiments conducted on a real dataset of social networks illustrate that our proposed algorithm significantly outperforms existing approaches in both efficiency and the quality of selected social trust paths.
Subjective Trust Inference in Composite Services
Li, Lei (Macquarie University) | Wang, Yan (Macquarie University)
In Service-Oriented Computing (SOC) environments, the trustworthiness of each service is critical for a service client when selecting one from a large pool of services. The trust value of a service is usually in the range of [0,1] and is evaluated from the ratings given by service clients, which represent the subjective belief of these service clients on the satisfaction of delivered services. So a trust value can be taken as the subjective probability, with which one party believes that another party can perform an action in a certain situation. Hence, subjective probability theory should be adopted in trust evaluation. In addition, in SOC environments, a service usually invokes other services offered by different service providers forming a composite service. Thus, the global trust of a composite service should be evaluated based on complex invocation structures. In this paper, firstly, based on Bayesian inference, we propose a novel method to evaluate the subjective trustworthiness of a service component from a series of ratings given by service clients. Secondly, we interpret the trust dependency caused by service invocations as conditional probability, which is evaluated based on the subjective trust values of service components. Furthermore, we propose a joint subjective probability method to evaluate the subjective global trust of a composite service on the basis of trust dependency. Finally, we introduce the results of our conducted experiments to illustrate the properties of our proposed subjective global trust inference method.