Goto

Collaborating Authors

 Linköping University


Planning with Temporal Uncertainty, Resources and Non-Linear Control Parameters

AAAI Conferences

We consider a general and industrially motivated class of planning problems involving a combination of requirements that can be essential to autonomous robotic systems planning to act in the real world: Support for temporal uncertainty where nature determines the eventual duration of an action, resource consumption with a non-linear relationship to durations, and the need to select appropriate values for control parameters that affect time requirements and resource usage. To this end, an existing planner is extended with support for Simple Temporal Networks with Uncertainty, Timed Initial Literals, and temporal coverage goals. Control parameters are lifted from the main combinatorial planning problem into a constraint satisfaction problem that connects them to resource usage. Constraint processing is then integrated and interleaved with verification of temporal feasibility, using projections for partial temporal awareness in the constraint solver.


The Importance of UX for Machine Teaching

AAAI Conferences

In this position paper, we argue that UX designers should take an increasing responsibility for the process and tools used in the generation of training data for machine learning algorithms. We provide a number of annotated examples from our UX practice within the medical imaging domain to highlight different ways that a UX approach can help to select training data set, facilitate initial generation and ensure that the final systems become self-sufficient on training data, so that the systems can efficiently improve performance over time.


Tailoring Pattern Databases for Unsolvable Planning Instances

AAAI Conferences

There has been an astounding improvement in domain-independent planning for solvable instances over the last decades and planners have become increasingly efficient at constructing plans. However, this advancement has not been matched by a similar improvement for identifying unsolvable instances. In this paper, we specialise pattern databases for dead-end detection and, thus, for detecting unsolvable instances. We propose two methods of constructing pattern collections and show that spending any more time constructing the pattern collection is likely to be unproductive. In other words, very few other pattern collections within the given space bounds are able to detect more dead-ends. We show this by carrying out a novel statistical analysis: a large computer cluster has been used to approximate the limit of pattern collections with respect to dead-end detection for many unsolvable instances, and this information is used in the analysis of the proposed methods. Consequently, further improvement must come from combining pattern databases with other techniques, such as mutexes. Furthermore, we explain why one of the proposed methods tends to find significantly more unsolvable variable projections, which is desirable since they imply that the instance is unsolvable. Finally, we compare the best proposed method with the winner and the runner up of the first unsolvability international planning competition, and show that the method is competitive.


Deep Learning Quadcopter Control via Risk-Aware Active Learning

AAAI Conferences

Modern optimization-based approaches to control increasingly allow automatic generation of complex behavior from only a model and an objective. Recent years has seen growing interest in fast solvers to also allow real-time operation on robots, but the computational cost of such trajectory optimization remains prohibitive for many applications. In this paper we examine a novel deep neural network approximation and validate it on a safe navigation problem with a real nano-quadcopter. As the risk of costly failures is a major concern with real robots, we propose a risk-aware resampling technique. Contrary to prior work this active learning approach is easy to use with existing solvers for trajectory optimization, as well as deep learning. We demonstrate the efficacy of the approach on a difficult collision avoidance problem with non-cooperative moving obstacles. Our findings indicate that the resulting neural network approximations are least 50 times faster than the trajectory optimizer while still satisfying the safety requirements. We demonstrate the potential of the approach by implementing a synthesized deep neural network policy on the nano-quadcopter microcontroller.


Plan Reordering and Parallel Execution — A Parameterized Complexity View

AAAI Conferences

Bäckström has previously studied a number of optimization problems for partial-order plans, like finding a minimum deordering (MCD) or reordering (MCR), and finding the minimum parallel execution length (PPL), which are all NP-complete. We revisit these problems, but applying parameterized complexity analysis rather than standard complexity analysis. We consider various parameters, including both the original and desired size of the plan order, as well as its width and height. Our findings include that MCD and MCR are W[2]-hard and in W[P] when parameterized with the desired order size, and MCD is fixed-parameter tractable (fpt) when parameterized with the original order size. Problem PPL is fpt if parameterized with the size of the non-concurrency relation, but para-NP-hard in most other cases. We also consider this problem when the number (k) of agents, or processors, is restricted, finding that this number is a crucial parameter; this problem is fixed-parameter tractable with the order size, the parallel execution length and k as parameter, but para-NP-hard without k as parameter.


Qualitative Spatio-Temporal Stream Reasoning with Unobservable Intertemporal Spatial Relations Using Landmarks

AAAI Conferences

Qualitative spatio-temporal reasoning is an active research area in Artificial Intelligence. In many situations there is a need to reason about intertemporal qualitative spatial relations, i.e. qualitative relations between spatial regions at different time-points. However, these relations can never be explicitly observed since they are between regions at different time-points. In applications where the qualitative spatial relations are partly acquired by for example a robotic system it is therefore necessary to infer these relations. This problem has, to the best of our knowledge, not been explicitly studied before. The contribution presented in this paper is two-fold. First, we present a spatio-temporal logic MSTL, which allows for spatio-temporal stream reasoning. Second, we define the concept of a landmark as a region that does not change between time-points and use these landmarks to infer qualitative spatio-temporal relations between non-landmark regions at different time-points. The qualitative spatial reasoning is done in RCC-8, but the approach is general and can be applied to any similar qualitative spatial formalism.


Cost-Optimal and Net-Benefit Planning — A Parameterised Complexity View

AAAI Conferences

Cost-optimal planning (COP) uses action costs and asks for a minimum-cost plan. It is sometimes assumed that there is no harm in using actions with zero cost or rational cost. Classical complexity analysis does not contradict this assumption; planning is PSPACE-complete regardless of whether action costs are positive or non-negative, integer or rational. We thus apply parameterised complexity analysis to shed more light on this issue. Our main results are the following. COP is [W2]-complete for positive integer costs, i.e. it is no harder than finding a minimum-length plan, but it is paraNP-hard if the costs are non-negative integers or positive rationals. This is a very strong indication that the latter cases are substantially harder. Net-benefit planning (NBP) additionally assigns goal utilities and asks for a plan with maximum difference between its utility and its cost. NBP is paraNP-hard even when action costs and utilities are positive integers, suggesting that it is harder than COP. In addition, we also analyse a large number of subclasses, using both the PUBS restrictions and restricting the number of preconditions and effects.


Tractable Cost-Optimal Planning over Restricted Polytree Causal Graphs

AAAI Conferences

Causal graphs are widely used to analyze the complexity of planning problems. Many tractable classes have been identified with their aid and state-of-the-art heuristics have been derived by exploiting such classes. In particular, Katz and Keyder have studied causal graphs that are hourglasses (which is a generalization of forks and inverted-forks) and shown that the corresponding cost-optimal planning problem is tractable under certain restrictions. We continue this work by studying polytrees (which is a generalization of hourglasses) under similar restrictions. We prove tractability of cost-optimal planning by providing an algorithm based on a novel notion of variable isomorphism. Our algorithm also sheds light on the k-consistency procedure for identifying unsolvable planning instances. We speculate that this may, at least partially, explain why merge-and-shrink heuristics have been successful for recognizing unsolvable instances.


Model-Based Reinforcement Learning in Continuous Environments Using Real-Time Constrained Optimization

AAAI Conferences

Reinforcement learning for robot control tasks in continuous environments is a challenging problem due to the dimensionality of the state and action spaces, time and resource costs for learning with a real robot as well as constraints imposed for its safe operation. In this paper we propose a model-based reinforcement learning approach for continuous environments with constraints. The approach combines model-based reinforcement learning with recent advances in approximate optimal control. This results in a bounded-rationality agent that makes decisions in real-time by efficiently solving a sequence of constrained optimization problems on learned sparse Gaussian process models. Such a combination has several advantages. No high-dimensional policy needs to be computed or stored while the learning problem often reduces to a set of lower-dimensional models of the dynamics. In addition, hard constraints can easily be included and objectives can also be changed in real-time to allow for multiple or dynamic tasks. The efficacy of the approach is demonstrated on both an extended cart pole domain and a challenging quadcopter navigation task using real data.


Oversubscription Planning: Complexity and Compilability

AAAI Conferences

Many real-world planning problems are oversubscription problems where all goals are not simultaneously achievable and the planner needs to find a feasible subset. We present complexity results for the so-called partial satisfaction and net benefit problems under various restrictions; this extends previous work by van den Briel et al. Our results reveal strong connections between these problems and with classical planning. We also present a method for efficiently compiling oversubscription problems into the ordinary plan existence problem; this can be viewed as a continuation of earlier work by Keyder & Geffner.