Goto

Collaborating Authors

 Kobe University


Word-Error Correction of Continuous Speech Recognition Based on Normalized Relevance Distance

AAAI Conferences

In spite of the recent advancements being made in speech recognition, recognition errors are unavoidable in continuous speech recognition. In this paper, we focus on a word-error correction system for continuous speech recognition using confusion networks.Conventional N-gram correction is widely used; however, the performance degrades due to the fact that the N-gram approach cannot measure information between long distance words. In order to improve the performance of the N-gram model, we employ Normalized Relevance Distance (NRD) as a measure for semantic similarity between words. NRD can identify not only co-occurrence but also the correlation of importance of the terms in documents. Even if the words are located far from each other, NRD can estimate the semantic similarity between the words. The effectiveness of our method was evaluated in continuous speech recognition tasks for multiple test speakers. Experimental results show that our error-correction method is the most effective approach as compared to the methods using other features.


Generating Interpretable Hypotheses Based on Syllogistic Patterns

AAAI Conferences

The ever-growing literature in biomedicine makes it virtually impossible for individuals to grasp all the information relevant to their interests. Since even experts' knowledge is likely to be incomplete, important associations among key biomedical concepts may remain unnoticed in the flood of information. Discovering those implicit, hidden knowledge is called hypothesis discovery. This paper reports our preliminary work on hypothesis discovery, which takes advantage of a syllogistic chain of relations extracted from existing knowledge (i.e., published literature). We consider such chains of relations as implicit patterns or rules to generate potential hypotheses. The generated hypotheses are then ranked according to their plausibility judged from the reliability of the rule which generated the hypothesis and the analogical resemblance between new and existing knowledge. We discuss the validity of the proposed approach on the entire Medline database.


Dynamic SAT with Decision Change Costs: Formalization and Solutions

AAAI Conferences

We address a dynamic decision problem in which decision makers must pay some costs when they change their decisions along the way. We formalize this problem as Dynamic SAT (DynSAT) with decision change costs, whose goal is to find a sequence of models that minimize the aggregation of the costs for changing variables. We provide two solutions to solve a specific case of this problem. The first uses a Weighted Partial MaxSAT solver after we encode the entire problem as a WeightedPartial MaxSAT problem. The second solution, which we believe is novel, uses the Lagrangian decomposition technique that divides the entire problem into sub-problems, each of which can be separately solved by an exact Weighted Partial MaxSATsolver, and produces both lower and upper bounds on the optimal in an anytime manner. To compare the performance of these solvers, we experimentedon the random problem and the target trackingproblem. The experimental results show that a solver based on Lagrangian decomposition performs better for the random problem and competitively for the target tracking problem.


Coalition Structure Generation based on Distributed Constraint Optimization

AAAI Conferences

Forming effective coalitions is a major research challenge in AI and multi-agent systems (MAS). Coalition Structure generation (CSG) involves partitioning a set of agents into coalitions so that social surplus (the sum of the rewards of all coalitions) is maximized. A partition is called a Coalition Structure (CS). In traditional works, the value of a coalition is given by a black box function called a characteristic function. In this paper, we propose a novel formalization of CSG, i.e., we assume the value of a characteristic function is given by an optimal solution of a distributed constraint optimization problem (DCOP) among the agents of a coalition. A DCOP is a popular approach for modeling cooperative agents, since it is quite general and can formalize various application problems in MAS. At first glance, one might assume that the computational costs required in this approach would be too expensive, since we need to solve an NP-hard problem just to obtain the value of a single coalition. To optimally solve a CSG, we might need to solve n-th power of 2 DCOP problem instances, where n is the number of agents. However, quite surprisingly, we show that an approximation algorithm, whose computational cost is about the same as solving just one DCOP, can find a CS with quality guarantees. More specifically, we develop an algorithm with parameter k that can find a CS whose social surplus is at least max(k/(w*+1), 2k/n) of the optimal CS, where w* is the tree width of a constraint graph. When k=1, the complexity of this algorithm is about the same as solving just one DCOP. These results illustrate that the locality of interactions among agents, which is explicitly modeled in the DCOP formalization, is quite useful in developing an efficient CSG algorithm with quality guarantees.