Katholieke Universiteit Leuven
Predicting Soccer Highlights from Spatio-Temporal Match Event Streams
Decroos, Tom (Katholieke Universiteit Leuven) | Dzyuba, Vladimir (Katholieke Universiteit Leuven) | Haaren, Jan Van (Katholieke Universiteit Leuven) | Davis, Jesse (Katholieke Universiteit Leuven)
Sports broadcasters are continuously seeking to make their live coverages of soccer matches more attractive. A recent innovation is the โhighlight channel,โ which shows the most interesting events from multiple matches played at the same time. However, switching between matches at the right time is challenging in fast-paced sports like soccer, where interesting situations often evolve as quickly as they disappear again. This paper presents the POGBA algorithm for automatically predicting highlights in soccer matches, which is an important task that has not yet been addressed. POGBA leverages spatio-temporal event streams collected during matches to predict the probability that a particular game state will lead to a goal. An empirical evaluation on a real-world dataset shows that POGBA outperforms the baseline algorithms in terms of both precision and recall.
Imagined Visual Representations as Multimodal Embeddings
Collell, Guillem (Katholieke Universiteit Leuven) | Zhang, Ted (Katholieke Universiteit Leuven) | Moens, Marie-Francine (Katholieke Universiteit Leuven)
Language and vision provide complementary information. Integrating both modalities in a single multimodal representation is an unsolved problem with wide-reaching applications to both natural language processing and computer vision. In this paper, we present a simple and effective method that learns a language-to-vision mapping and uses its output visual predictions to build multimodal representations. In this sense, our method provides a cognitively plausible way of building representations, consistent with the inherently re-constructive and associative nature of human memory. Using seven benchmark concept similarity tests we show that the mapped (or imagined) vectors not only help to fuse multimodal information, but also outperform strong unimodal baselines and state-of-the-art multimodal methods, thus exhibiting more human-like judgments. Ultimately, the present work sheds light on fundamental questions of natural language understanding concerning the fusion of vision and language such as the plausibility of more associative and re-constructive approaches.
First Order Logic with Inductive Definitions for Model-Based Problem Solving
Bruynooghe, Maurice (Katholieke Universiteit Leuven) | Denecker, Marc (Katholieke Universiteit Leuven) | Truszczynski, Miroslaw
First Order Logic with Inductive Definitions for Model-Based Problem Solving
Bruynooghe, Maurice (Katholieke Universiteit Leuven) | Denecker, Marc (Katholieke Universiteit Leuven) | Truszczynski, Miroslaw
In answer-set programming (ASP), programs can be viewed as specifications of finite Herbrand structures. Other logics can be (and, in fact, were) used towards the same end and can be taken as the basis of declarative programming systems of similar functionality as ASP. We discuss here one such logic, the logic FO(ID), and its implementation IDP3. The choice is motivated by notable similarities between ASP and FO(ID), even if both approaches trace back to different origins
A First-Order Logic of Probability and Only Knowing in Unbounded Domains
Belle, Vaishak (Katholieke Universiteit Leuven) | Lakemeyer, Gerhard (RWTH Aachen University) | Levesque, Hector (University of Toronto)
Only knowing captures the intuitive notion that the beliefs of an agent are precisely those that follow from its knowledge base. It has previously been shown to be useful in characterizing knowledge-based reasoners, especially in a quantified setting. While this allows us to reason about incomplete knowledge in the sense of not knowing whether a formula is true or not, there are many applications where one would like to reason about the degree of belief in a formula. In this work, we propose a new general first-order account of probability and only knowing that admits knowledge bases with incomplete and probabilistic specifications. Beliefs and non-beliefs are then shown to emerge as a direct logical consequence of the sentences of the knowledge base at a corresponding level of specificity.
Unsupervised Learning of an IS-A Taxonomy from a Limited Domain-Specific Corpus
Alfarone, Daniele (Katholieke Universiteit Leuven) | Davis, Jesse (Katholieke Universiteit Leuven)
Taxonomies hierarchically organize concepts in a domain. Building and maintaining them by hand is a tedious and time-consuming task. This paper proposes a novel, unsupervised algorithm for automatically learning an IS-A taxonomy from scratch by analyzing a given text corpus. Our approach is designed to deal with infrequently occurring concepts, so it can effectively induce taxonomies even from small corpora. Algorithmically, the approach makes two important contributions. First, it performs inference based on clustering and the distributional semantics, which can capture links among concepts never mentioned together. Second, it uses a novel graph-based algorithm to detect and remove incorrect is-a relations from a taxonomy. An empirical evaluation on five corpora demonstrates the utility of our proposed approach.
Reports of the AAAI 2014 Conference Workshops
Albrecht, Stefano V. (University of Edinburgh) | Barreto, Andrรฉ M. S. (Brazilian National Laboratory for Scientific Computing) | Braziunas, Darius (Kobo Inc.) | Buckeridge, David L. (McGill University) | Cuayรกhuitl, Heriberto (Heriot-Watt University) | Dethlefs, Nina (Heriot-Watt University) | Endres, Markus (University of Augsburg) | Farahmand, Amir-massoud (Carnegie Mellon University) | Fox, Mark (University of Toronto) | Frommberger, Lutz (University of Bremen) | Ganzfried, Sam (Carnegie Mellon University) | Gil, Yolanda (University of Southern California) | Guillet, Sรฉbastien (Universitรฉ du Quรฉbec ร Chicoutimi) | Hunter, Lawrence E. (University of Colorado School of Medicine) | Jhala, Arnav (University of California Santa Cruz) | Kersting, Kristian (Technical University of Dortmund) | Konidaris, George (Massachusetts Institute of Technology) | Lecue, Freddy (IBM Research) | McIlraith, Sheila (University of Toronto) | Natarajan, Sriraam (Indiana University) | Noorian, Zeinab (University of Saskatchewan) | Poole, David (University of British Columbia) | Ronfard, Rรฉmi (University of Grenoble) | Saffiotti, Alessandro (Orebro University) | Shaban-Nejad, Arash (McGill University) | Srivastava, Biplav (IBM Research) | Tesauro, Gerald (IBM Research) | Uceda-Sosa, Rosario (IBM Research) | Broeck, Guy Van den (Katholieke Universiteit Leuven) | Otterlo, Martijn van (Radboud University Nijmegen) | Wallace, Byron C. (University of Texas) | Weng, Paul (Pierre and Marie Curie University) | Wiens, Jenna (University of Michigan) | Zhang, Jie (Nanyang Technological University)
The AAAI-14 Workshop program was held Sunday and Monday, July 27โ28, 2012, at the Quรฉbec City Convention Centre in Quรฉbec, Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities -- Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.
Reports of the AAAI 2014 Conference Workshops
Albrecht, Stefano V. (University of Edinburgh) | Barreto, Andrรฉ M. S. (Brazilian National Laboratory for Scientific Computing) | Braziunas, Darius (Kobo Inc.) | Buckeridge, David L. (McGill University) | Cuayรกhuitl, Heriberto (Heriot-Watt University) | Dethlefs, Nina (Heriot-Watt University) | Endres, Markus (University of Augsburg) | Farahmand, Amir-massoud (Carnegie Mellon University) | Fox, Mark (University of Toronto) | Frommberger, Lutz (University of Bremen) | Ganzfried, Sam (Carnegie Mellon University) | Gil, Yolanda (University of Southern California) | Guillet, Sรฉbastien (Universitรฉ du Quรฉbec ร Chicoutimi) | Hunter, Lawrence E. (University of Colorado School of Medicine) | Jhala, Arnav (University of California Santa Cruz) | Kersting, Kristian (Technical University of Dortmund) | Konidaris, George (Massachusetts Institute of Technology) | Lecue, Freddy (IBM Research) | McIlraith, Sheila (University of Toronto) | Natarajan, Sriraam (Indiana University) | Noorian, Zeinab (University of Saskatchewan) | Poole, David (University of British Columbia) | Ronfard, Rรฉmi (University of Grenoble) | Saffiotti, Alessandro (Orebro University) | Shaban-Nejad, Arash (McGill University) | Srivastava, Biplav (IBM Research) | Tesauro, Gerald (IBM Research) | Uceda-Sosa, Rosario (IBM Research) | Broeck, Guy Van den (Katholieke Universiteit Leuven) | Otterlo, Martijn van (Radboud University Nijmegen) | Wallace, Byron C. (University of Texas) | Weng, Paul (Pierre and Marie Curie University) | Wiens, Jenna (University of Michigan) | Zhang, Jie (Nanyang Technological University)
The AAAI-14 Workshop program was held Sunday and Monday, July 27โ28, 2012, at the Quรฉbec City Convention Centre in Quรฉbec, Canada. Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities โ Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.
Efficient Probabilistic Inference for Dynamic Relational Models
Vlasselaer, Jonas (Katholieke Universiteit Leuven) | Meert, Wannes (Katholieke Universiteit Leuven) | Broeck, Guy Van den (Katholieke Universiteit Leuven) | Raedt, Luc De (Katholieke Universiteit Leuven)
Over the last couple of years, the interest in combining probability and logic has grown strongly. This led to the development of different software packages like PRISM, ProbLog and Alchemy, which offer a variety of exact and approximate algorithms to perform inference and learning. What is lacking, however, are algorithms to perform efficient inference in relational temporal models by systematically exploiting temporal and local structure. Since many real-world problems require temporal models, we argue that more research is necessary to use this structure to obtain more efficient inference and learning. While existing relational representations of dynamic domains focus rather on approximate inference techniques we propose an exact algorithm.
Forecasting Potential Diabetes Complications
Yang, Yang (Tsinghua University) | Luyten, Walter (Katholieke Universiteit Leuven) | Liu, Lu (Northwestern University) | Moens, Marie-Francine (Katholieke Universiteit Leuven) | Tang, Jie (Tsinghua University) | Li, Juanzi (Tsinghua University)
Diabetes complications often afflict diabetes patients seriously: over 68% of diabetes-related mortality is caused by diabetes complications. In this paper, we study the problem of automatically diagnosing diabetes complications from patients' lab test results. The objective problem has two main challenges: 1) feature sparseness: a patient only undergoes 1.26% lab tests on average, and 65.5% types of lab tests are performed on samples from less than 10 patients; 2) knowledge skewness: it lacks comprehensive detailed domain knowledge of the association between diabetes complications and lab tests. To address these challenges, we propose a novel probabilistic model called Sparse Factor Graph Model (SparseFGM). SparseFGM projects sparse features onto a lower-dimensional latent space, which alleviates the problem of sparseness. SparseFGM is also able to capture the associations between complications and lab tests, which help handle the knowledge skewness. We evaluate the proposed model on a large collections of real medical records. SparseFGM outperforms (+20% by F1) baselines significantly and gives detailed associations between diabetes complications and lab tests.