JD.COM
Latent Discriminant Subspace Representations for Multi-View Outlier Detection
Li, Kai (Northeastern University) | Li, Sheng (Adobe Research, USA) | Ding, Zhengming (Northeastern University) | Zhang, Weidong (JD.COM) | Fu, Yun (American Technologies Corporation)
Identifying multi-view outliers is challenging because of the complex data distributions across different views. Existing methods cope this problem by exploiting pairwise constraints across different views to obtain new feature representations,based on which certain outlier score measurements are defined. Due to the use of pairwise constraint, it is complicated and time-consuming for existing methods to detect outliers from three or more views. In this paper, we propose a novel method capable of detecting outliers from any number of dataviews. Our method first learns latent discriminant representations for all view data and defines a novel outlier score function based on the latent discriminant representations. Specifically, we represent multi-view data by a global low-rank representation shared by all views and residual representations specific to each view. Through analyzing the view-specific residual representations of all views, we can get the outlier score for every sample. Moreover, we raise the problem of detectinga third type of multi-view outliers which are neglected by existing methods. Experiments on six datasets show our method outperforms the existing ones in identifying all types of multi-view outliers, often by large margins.
R 3 : Reinforced Ranker-Reader for Open-Domain Question Answering
Wang, Shuohang (Singapore Management University) | Yu, Mo (IBM Research AI) | Guo, Xiaoxiao (IBM Research AI) | Wang, Zhiguo (IBM Research AI) | Klinger, Tim (IBM Research AI) | Zhang, Wei (IBM Research AI) | Chang, Shiyu (IBM Research AI) | Tesauro, Gerry (IBM Research AI) | Zhou, Bowen (JD.COM) | Jiang, Jing (Singapore Management University)
In recent years researchers have achieved considerable success applying neural network methods to question answering (QA). These approaches have achieved state of the art results in simplified closed-domain settings such as the SQuAD (Rajpurkar et al. 2016) dataset, which provides a pre-selected passage, from which the answer to a given question may be extracted. More recently, researchers have begun to tackle open-domain QA, in which the model is given a question and access to a large corpus (e.g., wikipedia) instead of a pre-selected passage (Chen et al. 2017a). This setting is more complex as it requires large-scale search for relevant passages by an information retrieval component, combined with a reading comprehension model that “reads” the passages to generate an answer to the question. Performance in this setting lags well behind closed-domain performance. In this paper, we present a novel open-domain QA system called Reinforced Ranker-Reader (R 3 ), based on two algorithmic innovations. First, we propose a new pipeline for open-domain QA with a Ranker component, which learns to rank retrieved passages in terms of likelihood of extracting the ground-truth answer to a given question. Second, we propose a novel method that jointly trains the Ranker along with an answer-extraction Reader model, based on reinforcement learning. We report extensive experimental results showing that our method significantly improves on the state of the art for multiple open-domain QA datasets.
Orthogonal Weight Normalization: Solution to Optimization Over Multiple Dependent Stiefel Manifolds in Deep Neural Networks
Huang, Lei (Beihang University) | Liu, Xianglong (Beihang University) | Lang, Bo (Beihang University) | Yu, Adams Wei (Carnegie Mellon University) | Wang, Yongliang (JD.COM) | Li, Bo (University of California, Berkeley)
Orthogonal matrix has shown advantages in training Recurrent Neural Networks (RNNs), but such matrix is limited to be square for the hidden-to-hidden transformation in RNNs. In this paper, we generalize such square orthogonal matrix to orthogonal rectangular matrix and formulating this problem in feed-forward Neural Networks (FNNs) as Optimization over Multiple Dependent Stiefel Manifolds (OMDSM). We show that the orthogonal rectangular matrix can stabilize the distribution of network activations and regularize FNNs. We propose a novel orthogonal weight normalization method to solve OMDSM. Particularly, it constructs orthogonal transformation over proxy parameters to ensure the weight matrix is orthogonal. To guarantee stability, we minimize the distortions between proxy parameters and canonical weights over all tractable orthogonal transformations. In addition, we design orthogonal linear module (OLM) to learn orthogonal filter banks in practice, which can be used as an alternative to standard linear module. Extensive experiments demonstrate that by simply substituting OLM for standard linear module without revising any experimental protocols, our method improves the performance of the state-of-the-art networks, including Inception and residual networks on CIFAR and ImageNet datasets.