IBM Research - Tokyo
Nonlinear Dynamic Boltzmann Machines for Time-Series Prediction
Dasgupta, Sakyasingha (IBM Research - Tokyo) | Osogami, Takayuki (IBM Research - Tokyo)
The dynamic Boltzmann machine (DyBM) has been proposed as a stochastic generative model of multi-dimensional time series, with an exact, learning rule that maximizes the log-likelihood of a given time series. The DyBM, however, is defined only for binary valued data, without any nonlinear hidden units. Here, in our first contribution, we extend the DyBM to deal with real valued data. We present a formulation called Gaussian DyBM, that can be seen as an extension of a vector autoregressive (VAR) model. This uses, in addition to standard (explanatory) variables, components that captures long term dependencies in the time series. In our second contribution, we extend the Gaussian DyBM model with a recurrent neural network (RNN) that controls the bias input to the DyBM units. We derive a stochastic gradient update rule such that, the output weights from the RNN can also be trained online along with other DyBM parameters. Furthermore, this acts as nonlinear hidden layer extending the capacity of DyBM and allows it to model nonlinear components in a given time-series. Numerical experiments with synthetic datasets show that the RNN-Gaussian DyBM improves predictive accuracy upon standard VAR by up to 35%. On real multi-dimensional time-series prediction, consisting of high nonlinearity and non-stationarity, we demonstrate that this nonlinear DyBM model achieves significant improvement upon state of the art baseline methods like VAR and long short-term memory (LSTM) networks at a reduced computational cost.
A Deep Choice Model
Otsuka, Makoto (CREST, JST) | Osogami, Takayuki (IBM Research - Tokyo)
Human choice is complex in two ways. First, human choice often shows complex dependency on available alternatives. Second, human choice is often made after examining complex items such as images. The recently proposed choice model based on the restricted Boltzmann machine (RBM choice model) has been proved to represent three typical phenomena of human choice, which addresses the first complexity. We extend the RBM choice model to a deep choice model (DCM) to deal with the features of items, which are ignored in the RBM choice model. We then use deep learning to extract latent features from images and plug those latent features as input to the DCM. Our experiments show that the DCM adequately learns the choice that involves both of the two complexities in human choice.
A Mathematical Programming-Based Approach to Determining Objective Functions from Qualitative and Subjective Comparisons
Yoshizumi, Takayuki (IBM Research - Tokyo)
The solutions or states of optimization problems or simulations are evaluated by using objective functions. The weights for these objective functions usually have to be estimated from experts' evaluations, which are likely to be qualitative and somewhat subjective. Although such estimation tasks are normally regarded as quite suitable for machine learning, we propose a mathematical programming-based method for better estimation. The key idea of our method is to use an ordinal scale for measuring paired differences of the objective values as well as the paired objective values. By using an ordinal scale, experts' qualitative and subjective evaluations can be appropriately expressed with simultaneous linear inequalities, and which can be handled by a mathematical programming solver. This allows us to extract more information from experts' evaluations compared to machine-learning-based algorithms, which increases the accuracy of our estimation. We show that our method outperforms machine-learning-based algorithms in a test of finding appropriate weights for an objective function.
Mixing-Time Regularized Policy Gradient
Morimura, Tetsuro (IBM Research - Tokyo) | Osogami, Takayuki (IBM Research - Tokyo) | Shirai, Tomoyuki (Kyushu University)
Policy gradient reinforcement learning (PGRL) has been receiving substantial attention as a mean for seeking stochastic policies that maximize cumulative reward. However, the learning speed of PGRL is known to decrease substantially when PGRL explores the policies that give the Markov chains having long mixing time. We study a new approach of regularizing how the PGRL explores the policies by the use of the hitting time of the Markov chains. The hitting time gives an upper bound on the mixing time, and the proposed approach improves the learning efficiency by keeping the mixing time of the Markov chains short. In particular, we propose a method of temporal-difference learning for estimating the gradient of the hitting time. Numerical experiments show that the proposed method outperforms conventional methods of PGRL.
Time-Consistency of Optimization Problems
Osogami, Takayuki (IBM Research - Tokyo) | Morimura, Tetsuro (IBM Research - Tokyo)
We study time-consistency of optimization problems, where we say that an optimization problem is time-consistent if its optimal solution, or the optimal policy for choosing actions, does not depend on when the optimization problem is solved. Time-consistency is a minimal requirement on an optimization problem for the decisions made based on its solution to be rational. We show that the return that we can gain by taking "optimal" actions selected by solving a time-inconsistent optimization problem can be surely dominated by that we could gain by taking "suboptimal" actions. We establish sufficient conditions on the objective function and on the constraints for an optimization problem to be time-consistent. We also show when the sufficient conditions are necessary. Our results are relevant in stochastic settings particularly when the objective function is a risk measure other than expectation or when there is a constraint on a risk measure.
A Convex Formulation for Learning from Crowds
Kajino, Hiroshi (The University of Tokyo) | Tsuboi, Yuta (IBM Research - Tokyo) | Kashima, Hisashi (The University of Tokyo)
Recently crowdsourcing services are often used to collect a large amount of labeled data for machine learning, since they provide us an easy way to get labels at very low cost and in a short period. The use of crowdsourcing has introduced a new challenge in machine learning, that is, coping with the variable quality of crowd-generated data. Although there have been many recent attempts to address the quality problem of multiple workers, only a few of the existing methods consider the problem of learning classifiers directly from such noisy data. All these methods modeled the true labels as latent variables, which resulted in non-convex optimization problems. In this paper, we propose a convex optimization formulation for learning from crowds without estimating the true labels by introducing personal models of the individual crowd workers. We also devise an efficient iterative method for solving the convex optimization problems by exploiting conditional independence structures in multiple classifiers. We evaluate the proposed method against three competing methods on synthetic data sets and a real crowdsourced data set and demonstrate that the proposed method outperforms the other three methods.
Learning from Crowds and Experts
Kajino, Hiroshi (The University of Tokyo) | Tsuboi, Yuta (IBM Research - Tokyo) | Sato, Issei (The University of Tokyo) | Kashima, Hisashi (The University of Tokyo)
Crowdsourcing services are often used to collect a large amount of labeled data for machine learning. Although they provide us an easy way to get labels at very low cost in a short period, they have serious limitations. One of them is the variable quality of the crowd-generated data. There have been many attempts to increase the reliability of crowd-generated data and the quality of classifiers obtained from such data. However, in these problem settings, relatively few researchers have tried using expert-generated data to achieve further improvements. In this paper, we extend three models that deal with the problem of learning from crowds to utilize ground truths: a latent class model, a personal classifier model, and a data-dependent error model. We evaluate the proposed methods against two baseline methods on a real data set to demonstrate the effectiveness of combining crowd-generated data and expert-generated data.
Fast Newton-CG Method for Batch Learning of Conditional Random Fields
Tsuboi, Yuta (IBM Research - Tokyo) | Unno, Yuya (Preferred Infrastructure, Inc.) | Kashima, Hisashi (The University of Tokyo) | Okazaki, Naoaki (Tohoku University)
We propose a fast batch learning method for linear-chain Conditional Random Fields (CRFs) based on Newton-CG methods. Newton-CG methods are a variant of Newton method for high-dimensional problems. They only require the Hessian-vector products instead of the full Hessian matrices. To speed up Newton-CG methods for the CRF learning, we derive a novel dynamic programming procedure for the Hessian-vector products of the CRF objective function. The proposed procedure can reuse the byproducts of the time-consuming gradient computation for the Hessian-vector products to drastically reduce the total computation time of the Newton-CG methods. In experiments with tasks in natural language processing, the proposed method outperforms a conventional quasi-Newton method. Remarkably, the proposed method is competitive with online learning algorithms that are fast but unstable.