Hebrew University
Coalitional Structure Generation in Skill Games
Bachrach, Yoram (Microsoft Research) | Meir, Reshef (Hebrew University) | Jung, Kyomin (KAIST) | Kohli, Pushmeet (Microsoft)
We consider optimizing the coalition structure in Coalitional Skill Games (CSGs), a succinct representation of coalitional games. In CSGs, the value of a coalition depends on the tasks its members can achieve. The tasks require various skills to complete them, and agents may have different skill sets. The optimal coalition structure is a partition of the agents to coalitions, that maximizes the sum of utilities obtained by the coalitions. We show that CSGs can represent any characteristic function, and consider optimal coalition structure generation in this representation. We provide hardness results, showing that in general CSGs, as well as in very restricted versions of them, computing the optimal coalition structure is hard. On the positive side, we show that the problem can be reformulated as constraint satisfaction on a hyper graph, and present an algorithm that finds the optimal coalition structure in polynomial time for instances with bounded tree-width and number of tasks.
Ad Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination
Stone, Peter (The University of Texas at Austin) | Kaminka, Gal A. (Bar-Ilan University) | Kraus, Sarit (Bar-Ilan University) | Rosenschein, Jeffrey S. (Hebrew University)
As autonomous agents proliferate in the real world, both in software and robotic settings, they will increasingly need to band together for cooperative activities with previously unfamiliar teammates. In such ad hoc team settings, team strategies cannot be developed a priori. Rather, an agent must be prepared to cooperate with many types of teammates: it must collaborate without pre-coordination. This paper challenges the AI community to develop theory and to implement prototypes of ad hoc team agents. It defines the concept of ad hoc team agents, specifies an evaluation paradigm, and provides examples of possible theoretical and empirical approaches to challenge. The goal is to encourage progress towards this ambitious, newly realistic, and increasingly important research goal.
Complexity of Unweighted Coalitional Manipulation Under Some Common Voting Rules
Xia, Lirong (Duke University) | Zuckerman, Michael (Hebrew University) | Procaccia, Ariel D. (Microsoft Israel R&D Center) | Conitzer, Vincent (Duke University) | Rosenschein, Jeffrey S. (Hebrew University)
Understanding the computational complexity of manipulation in elections is arguably the most central agenda in Computational Social Choice. One of the influential variations of the the problem involves a coalition of manipulators trying to make a favorite candidate win the election. Although the complexity of the problem is well-studied under the assumption that the voters are weighted, there were very few successful attempts to abandon this strong assumption. In this paper, we study the complexity of the unweighted coalitional manipulation problem (UCM) under several prominent voting rules. Our main result is that UCM is NP-complete under the maximin rule; this resolves an enigmatic open question. We then show that UCM is NP-complete under the ranked pairs rule, even with respect to a single manipulator. Furthermore, we provide an extreme hardness-of-approximation result for an optimization version of UCM under ranked pairs. Finally, we show that UCM under the Bucklin rule is in P.