Goto

Collaborating Authors

 HTC Research


Context-Aware Symptom Checking for Disease Diagnosis Using Hierarchical Reinforcement Learning

AAAI Conferences

Online symptom checkers have been deployed by sites such as WebMD and Mayo Clinic to identify possible causes and treatments for diseases based on a patient’s symptoms. Symptom checking first assesses a patient by asking a series of questions about their symptoms, then attempts to predict potential diseases. The two design goals of a symptom checker are to achieve high accuracy and intuitive interactions. In this paper we present our context-aware hierarchical reinforcement learning scheme, which significantly improves accuracy of symptom checking over traditional systems while also making a limited number of inquiries.


Tweet Timeline Generation with Determinantal Point Processes

AAAI Conferences

The task of tweet timeline generation (TTG) aims at selecting a small set of representative tweets to generate a meaningful timeline and providing enough coverage for a given topical query. This paper presents an approach based on determinantal point processes (DPPs) by jointly modeling the topical relevance of each selected tweet and overall selectional diversity. Aiming at better treatment for balancing relevance and diversity, we introduce two novel strategies, namely spectral rescaling and topical prior. Extensive experiments on the public TREC 2014 dataset demonstrate that our proposed DPP model along with the two strategies can achieve fairly competitive results against the state-of-the-art TTG systems.