Goto

Collaborating Authors

 Grant MacEwan University


Visualizing Stock Market Data with Self-Organizing Map

AAAI Conferences

Finding useful patterns in stock market data requires tremendous analytical skills and effort. To help investors manage their portfolios, we developed a tool for clustering and visualizing stock market data using an unsupervised learning algorithm called Self-Organizing Map. Our tool is intended to assist users in identifying groups of stocks that have similar price movement patterns over a period of time. We performed a visual analysis by comparing the resulting visualization with Yahoo Finance charts. Overall, we found that the Self-Organizing Map algorithm can analyze and cluster the stock market data reasonably.


Simultaneously Searching with Multiple Settings: An Alternative to Parameter Tuning for Suboptimal Single-Agent Search Algorithms

AAAI Conferences

Many search algorithms have parameters that need to be tuned to get the best performance. Typically, the parameters are tuned offline, resulting in a generic setting that is supposed to be effective on all problem instances. For suboptimal single-agent search, problem-instance-specific parameter settings can result in substantially reduced search effort. We consider the use of dovetailing as a way to take advantage of this fact. Dovetailing is a procedure that performs search with multiple parameter settings simultaneously. Dovetailing is shown to improve the search speed of weighted IDA* by several orders of magnitude and to generally enhance the performance of weighted RBFS. This procedure is trivially parallelizable and is shown to be an effective form of parallelization for WA* and BULB. In particular, using WA* with parallel dovetailing yields good speedups in the sliding-tile puzzle domain, and increases the number of problems solved when used in an automated planning system.