General Motors Advanced Technical Center
Advice Provision for Choice Selection Processes with Ranked Options
Azaria, Amos (Bar-Ilan University) | Gal, Ya' (Ben Gurion University) | akov (General Motors Advanced Technical Center) | Goldman, Claudia V. (Bar Ilan University) | Kraus, Sarit
Choice selection processes are a family of bilateral games of incomplete information in which a computer agent generates advice for a human user while considering the effect of the advice on the user's behavior in future interactions. The human and the agent may share certain goals, but are essentially self-interested. This paper extends selection processes to settings in which the actions available to the human are ordered and thus the user may be influenced by the advice even though he doesn't necessarily follow it exactly. In this work we also consider the case in which the user obtains some observation on the sate of the world. We propose several approaches to model human decision making in such settings. We incorporate these models into two optimization techniques for the agent advice provision strategy. In the first one the agent used a social utility approach which considered the benefits and costs for both agent and person when making suggestions. In the second approach we simplified the human model in order to allow modeling and solving the agent strategy as an MDP. In an empirical evaluation involving human users on AMT, we showed that the social utility approach significantly outperformed the MDP approach.
Advice Provision for Energy Saving in Automobile Climate Control Systems
Azaria, Amos (Bar Ilan University) | Kraus, Sarit (Bar Ilan University) | Goldman, Claudia V. (General Motors Advanced Technical Center) | Tsimhoni, Omer (General Motors Advanced Technical Center)
Reducing energy consumption of climate control systems is important in order to reduce human environmental footprint. The need to save energy becomes even greater when considering an electric car, since heavy use of the climate control system may exhaust the battery. In this paper we consider a method for an automated agent to provide advice to drivers which will motivate them to reduce the energy consumption of their climate control unit. Our approach takes into account both the energy consumption of the climate control system and the expected comfort level of the driver. We therefore build two models, one for assessing the energy consumption of the climate control system as a function of the system's settings, and the other, models human comfort level as a function of the climate control system's settings. Using these models, the agent provides advice to the driver considering how to set the climate control system. The agent advises settings which try to preserve a high level of comfort while consuming as little energy as possible. We empirically show that drivers equipped with our agent which provides them with advice significantly save energy as compared to drivers not equipped with our agent.