Goto

Collaborating Authors

 Fujitsu Laboratories Ltd.


Learning Multi-Way Relations via Tensor Decomposition With Neural Networks

AAAI Conferences

How can we classify multi-way data such as network traffic logs with multi-way relations between source IPs, destination IPs, and ports? Multi-way data can be represented as a tensor, and there have been several studies on classification of tensors to date. One critical issue in the classification of multi-way relations is how to extract important features for classification when objects in different multi-way data, i.e., in different tensors, are not necessarily in correspondence. In such situations, we aim to extract features that do not depend on how we allocate indices to an object such as a specific source IP; we are interested in only the structures of the multi-way relations. However, this issue has not been considered in previous studies on classification of multi-way data. We propose a novel method which can learn and classify multi-way data using neural networks. Our method leverages a novel type of tensor decomposition that utilizes a target core tensor expressing the important features whose indices are independent of those of the multi-way data. The target core tensor guides the tensor decomposition into more effective results and is optimized in a supervised manner. Our experiments on three different domains show that our method is highly accurate, especially on higher order data. It also enables us to interpret the classification results along with the matrices calculated with the novel tensor decomposition.


Prerequisite Skills for Reading Comprehension: Multi-Perspective Analysis of MCTest Datasets and Systems

AAAI Conferences

One of the main goals of natural language processing (NLP) is synthetic understanding of natural language documents, especially reading comprehension (RC). An obstacle to the further development of RC systems is the absence of a synthetic methodology to analyze their performance. It is difficult to examine the performance of systems based solely on their results for tasks because the process of natural language understanding is complex. In order to tackle this problem, we propose in this paper a methodology inspired by unit testing in software engineering that enables the examination of RC systems from multiple aspects. Our methodology consists of three steps. First, we define a set of prerequisite skills for RC based on existing NLP tasks. We assume that RC capability can be divided into these skills. Second, we manually annotate a dataset for an RC task with information regarding the skills needed to answer each question. Finally, we analyze the performance of RC systems for each skill based on the annotation. The last two steps highlight two aspects: the characteristics of the dataset, and the weaknesses in and differences among RC systems. We tested the effectiveness of our methodology by annotating the Machine Comprehension Test (MCTest) dataset and analyzing four existing systems (including a neural system) on it. The results of the annotations showed that answering questions requires a combination of skills, and clarified the kinds of capabilities that systems need to understand natural language. We conclude that the set of prerequisite skills we define are promising for the decomposition and analysis of RC.


The Most Uncreative Examinee: A First Step toward Wide Coverage Natural Language Math Problem Solving

AAAI Conferences

We report on a project aiming at developing a system that solves a wide range of math problems written in natural language. In the system, formal analysis of natural language semantics is coupled with automated reasoning technologies including computer algebra, using logic as their common language. We have developed a prototype system that accepts as its input a linguistically annotated problem text. Using the prototype system as a reference point, we analyzed real university entrance examination problems from the viewpoint of end-to-end automated reasoning. Further, evaluation on entrance exam mock tests revealed that an optimistic estimate of the system’s performance already matches human averages on a few test sets.