Goto

Collaborating Authors

 Fudan Univeristy


Discourse Relations Detection via a Mixed Generative-Discriminative Framework

AAAI Conferences

Word embeddings, which can better capture the fine-grained semantics of words, have proven to be useful for a variety of natural language processing tasks. However, because discourse structures describe the relationships between segments of discourse, word embeddings cannot be directly integrated to perform the task. In this paper, we introduce a mixed generative-discriminative framework, in which we use vector offsets between embeddings of words to represent the semantic relations between text segments and Fisher kernel framework to convert a variable number of vector offsets into a fixed length vector. In order to incorporate the weights of these offsets into the vector, we also propose the Weighted Fisher Vector. Experimental results on two different datasets show that the proposed method without using manually designed features can achieve better performance on recognizing the discourse level relations in most cases.


Cross-Modal Image Clustering via Canonical Correlation Analysis

AAAI Conferences

A new algorithm via Canonical Correlation Analysis (CCA) is developed in this paper to support more effective cross-modal image clustering for large-scale annotated image collections. It can be treated as a bi-media multimodal mapping problem and modeled as a correlation distribution over multimodal feature representations. It integrates the multimodal feature generation with the Locality Linear Coding (LLC) and co-occurrence association network, multimodal feature fusion with CCA, and accelerated hierarchical k-means clustering, which aims to characterize the correlations between the inter-related visual features in images and semantic features in captions, and measure their association degree more precisely. Very positive results were obtained in our experiments using a large quantity of public data.