Goto

Collaborating Authors

 Ecole Polytechnique and Athens University of Economics and Business


Matching Node Embeddings for Graph Similarity

AAAI Conferences

Graph kernels have emerged as a powerful tool for graph comparison. Most existing graph kernels focus on local properties of graphs and ignore global structure. In this paper, we compare graphs based on their global properties as these are captured by the eigenvectors of their adjacency matrices. We present two algorithms for both labeled and unlabeled graph comparison. These algorithms represent each graph as a set of vectors corresponding to the embeddings of its vertices. The similarity between two graphs is then determined using the Earth Mover's Distance metric. These similarities do not yield a positive semidefinite matrix. To address for this, we employ an algorithm for SVM classification using indefinite kernels. We also present a graph kernel based on the Pyramid Match kernel that finds an approximate correspondence between the sets of vectors of the two graphs. We further improve the proposed kernel using the Weisfeiler-Lehman framework. We evaluate the proposed methods on several benchmark datasets for graph classification and compare their performance to state-of-the-art graph kernels. In most cases, the proposed algorithms outperform the competing methods, while their time complexity remains very attractive.


CoreCluster: A Degeneracy Based Graph Clustering Framework

AAAI Conferences

Graph clustering or community detection constitutes an important task forinvestigating the internal structure of graphs, with a plethora of applications in several domains. Traditional tools for graph clustering, such asspectral methods, typically suffer from high time and space complexity. In thisarticle, we present CoreCluster, an efficient graph clusteringframework based on the concept of graph degeneracy, that can be used along withany known graph clustering algorithm. Our approach capitalizes on processing thegraph in a hierarchical manner provided by its core expansion sequence, anordered partition of the graph into different levels according to the k-coredecomposition. Such a partition provides a way to process the graph inan incremental manner that preserves its clustering structure, whilemaking the execution of the chosen clustering algorithm much faster due to thesmaller size of the graph's partitions onto which the algorithm operates.