Goto

Collaborating Authors

 East China University of Science and Technology


Label Distribution Learning by Exploiting Label Correlations

AAAI Conferences

Label distribution learning (LDL) is a newly arisen machine learning method that has been increasingly studied in recent years. In theory, LDL can be seen as a generalization of multi-label learning. Previous studies have shown that LDL is an effective approach to solve the label ambiguity problem. However, the dramatic increase in the number of possible label sets brings a challenge in performance to LDL. In this paper, we propose a novel label distribution learning algorithm to address the above issue. The key idea is to exploit correlations between different labels. We encode the label correlation into a distance to measure the similarity of any two labels. Moreover, we construct a distance-mapping function from the label set to the parameter matrix. Experimental results on eight real label distributed data sets demonstrate that the proposed algorithm performs remarkably better than both the state-of-the-art LDL methods and multi-label learning methods.


Cross-Lingual Taxonomy Alignment with Bilingual Biterm Topic Model

AAAI Conferences

As more and more multilingual knowledge becomes available on the Web, knowledge sharing across languages has become an important task to benefit many applications. One of the most crucial kinds of knowledge on the Web is taxonomy, which is used to organize and classify the Web data. To facilitate knowledge sharing across languages, we need to deal with the problem of cross-lingual taxonomy alignment, which discovers the most relevant category in the target taxonomy of one language for each category in the source taxonomy of another language. Current approaches for aligning cross-lingual taxonomies strongly rely on domain-specific information and the features based on string similarities. In this paper, we present a new approach to deal with the problem of cross-lingual taxonomy alignment without using any domain-specific information. We first identify the candidate matched categories in the target taxonomy for each category in the source taxonomy using the cross-lingual string similarity. We then propose a novel bilingual topic model, called Bilingual Biterm Topic Model (BiBTM), to perform exact matching. BiBTM is trained by the textual contexts extracted from the Web. We conduct experiments on two kinds of real world datasets. The experimental results show that our approach significantly outperforms the designed state-of-the-art comparison methods.


Semi-Universal Portfolios with Transaction Costs

AAAI Conferences

Online portfolio selection (PS) has been extensively studied in artificial intelligence and machine learning communities in recent years. An important practical issue of online PS is transaction cost, which is unavoidable and nontrivial in real financial trading markets. Most existing strategies, such as universal portfolio (UP) based strategies, often rebalance their target portfolio vectors at every investment period, and thus the total transaction cost increases rapidly and the final cumulative wealth degrades severely. To overcome the limitation, in this paper we investigate new investment strategies that rebalances its portfolio only at some selected instants. Specifically, we design a novel on-line PS strategy named semi-universal portfolio (SUP) strategy under transaction cost, which attempts to avoid rebalancing when the transaction cost outweighs the benefit of trading. We show that the proposed SUP strategy is universal and has an upper bound on the regret. We present an efficient implementation of the strategy based on non-uniform random walks and online factor graph algorithms. Empirical simulation on real historical markets show that SUP can overcome the drawback of existing UP based transaction cost aware algorithms and achieve significantly better performance. Furthermore, SUP has a polynomial complexity in the number of stocks and thus is efficient and scalable in practice.