Goto

Collaborating Authors

 ETH Zurich


Simulating Offender Mobility: Modeling Activity Nodes from Large-Scale Human Activity Data

Journal of Artificial Intelligence Research

In recent years, simulation techniques have been applied to investigate the spatiotemporal dynamics of crime. Researchers have instantiated mobile offenders in agent-based simulations for theory testing, experimenting with crime prevention strategies, and exploring crime prediction techniques, despite facing challenges due to the complex dynamics of crime and the lack of detailed information about offender mobility. This paper presents a simulation model to explore offender mobility, focusing on the interplay between the agent's awareness space and activity nodes. The simulation generates patterns of individual mobility aiming to cumulatively match crime patterns. To instantiate a realistic urban environment, we use open data to simulate the urban structure, location-based social networks data to represent activity nodes as a proxy for human activity, and taxi trip data as a proxy for human movement between regions of the city. We analyze and systematically compare 35 different mobility strategies and demonstrate the benefits of using large-scale human activity data to simulate offender mobility. The strategies combining taxi trip data or historic crime data with popular activity nodes perform best compared to other strategies, especially for robbery. Our approach provides a basis for building agent-based crime simulations that infer offender mobility in urban areas from real-world data.


Streaming Non-Monotone Submodular Maximization: Personalized Video Summarization on the Fly

AAAI Conferences

The need for real time analysis of rapidly producing data streams (e.g., video and image streams) motivated the design of streaming algorithms that can efficiently extract and summarize useful information from massive data "on the fly." Such problems can often be reduced to maximizing a submodular set function subject to various constraints. While efficient streaming methods have been recently developed for monotone submodular maximization, in a wide range of applications, such as video summarization, the underlying utility function is non-monotone, and there are often various constraints imposed on the optimization problem to consider privacy or personalization. We develop the first efficient single pass streaming algorithm, Streaming Local Search, that for any streaming monotone submodular maximization algorithm with approximation guarantee α under a collection of independence systems I, provides a constant 1/(1+2/√α+1/α+2d(1+√α)) approximation guarantee for maximizing a non-monotone submodular function under the intersection of I and d knapsack constraints. Our experiments show that for video summarization, our method runs more than 1700 times faster than previous work, while maintaining practically the same performance.


Relational Marginal Problems: Theory and Estimation

AAAI Conferences

In the propositional setting, the marginal problem is to find a (maximum-entropy) distribution that has some given marginals. We study this problem in a relational setting and make the following contributions. First, we compare two different notions of relational marginals. Second, we show a duality between the resulting relational marginal problems and the maximum likelihood estimation of the parameters of relational models, which generalizes a well-known duality from the propositional setting. Third, by exploiting the relational marginal formulation, we present a statistically sound method to learn the parameters of relational models that will be applied in settings where the number of constants differs between the training and test data. Furthermore, based on a relational generalization of marginal polytopes, we characterize cases where the standard estimators based on feature's number of true groundings needs to be adjusted and we quantitatively characterize the consequences of these adjustments. Fourth, we prove bounds on expected errors of the estimated parameters, which allows us to lower-bound, among other things, the effective sample size of relational training data.


Teaching a Machine to Read Maps With Deep Reinforcement Learning

AAAI Conferences

The ability to use a 2D map to navigate a complex 3D environment is quite remarkable, and even difficult for many humans. Localization and navigation is also an important problem in domains such as robotics, and has recently become a focus of the deep reinforcement learning community. In this paper we teach a reinforcement learning agent to read a map in order to find the shortest way out of a random maze it has never seen before. Our system combines several state-of-the-art methods such as A3C and incorporates novel elements such as a recurrent localization cell. Our agent learns to localize itself based on 3D first person images and an approximate orientation angle. The agent generalizes well to bigger mazes, showing that it learned useful localization and navigation capabilities.


On the ERM Principle With Networked Data

AAAI Conferences

Networked data, in which every training example involves two objects and may share some common objects with others, is used in many machine learning tasks such as learning to rank and link prediction. A challenge of learning from networked examples is that target values are not known for some pairs of objects. In this case, neither the classical i.i.d. assumption nor techniques based on complete U-statistics can be used. Most existing theoretical results of this problem only deal with the classical empirical risk minimization (ERM) principle that always weights every example equally, but this strategy leads to unsatisfactory bounds. We consider general weighted ERM and show new universal risk bounds for this problem. These new bounds naturally define an optimization problem which leads to appropriate weights for networked examples. Though this optimization problem is not convex in general, we devise a new fully polynomial-time approximation scheme (FPTAS) to solve it.


Towards Neural Speaker Modeling in Multi-Party Conversation: The Task, Dataset, and Models

AAAI Conferences

In this paper, we address the problem of speaker classification in multi-party conversation, and collect massive data to facilitate research in this direction. We further investigate temporal-based and content-based models of speakers, and propose several hybrids of them. Experiments show that speaker classification is feasible, and that hybrid models outperform each single component.


Information Gathering With Peers: Submodular Optimization With Peer-Prediction Constraints

AAAI Conferences

We study a problem of optimal information gathering from multiple data providers that need to be incentivized to provide accurate information. This problem arises in many real world applications that rely on crowdsourced data sets, but where the process of obtaining data is costly. A notable example of such a scenario is crowd sensing. To this end, we formulate the problem of optimal information gathering as maximization of a submodular function under a budget constraint, where the budget represents the total expected payment to data providers. Contrary to the existing approaches, we base our payments on incentives for accuracy and truthfulness, in particular, peer prediction methods that score each of the selected data providers against its best peer, while ensuring that the minimum expected payment is above a given threshold. We first show that the problem at hand is hard to approximate within a constant factor that is not dependent on the properties of the payment function. However, for given topological and analytical properties of the instance, we construct two greedy algorithms, respectively called PPCGreedy and PPCGreedyIter, and establish theoretical bounds on their performance w.r.t. the optimal solution. Finally, we evaluate our methods using a realistic crowd sensing testbed.


Building Deep Networks on Grassmann Manifolds

AAAI Conferences

Learning representations on Grassmann manifolds is popular in quite a few visual recognition tasks. In order to enable deep learning on Grassmann manifolds, this paper proposes a deep network architecture by generalizing the Euclidean network paradigm to Grassmann manifolds. In particular, we design full rank mapping layers to transform input Grassmannian data to more desirable ones, exploit re-orthonormalization layers to normalize the resulting matrices, study projection pooling layers to reduce the model complexity in the Grassmannian context, and devise projection mapping layers to respect Grassmannian geometry and meanwhile achieve Euclidean forms for regular output layers. To train the Grassmann networks, we exploit a stochastic gradient descent setting on manifolds of the connection weights, and study a matrix generalization of backpropagation to update the structured data. The evaluations on three visual recognition tasks show that our Grassmann networks have clear advantages over existing Grassmann learning methods, and achieve results comparable with state-of-the-art approaches.


Incentive-Compatible Forecasting Competitions

AAAI Conferences

We consider the design of forecasting competitions in which multiple forecasters make predictions about one or more independent events and compete for a single prize. We have two objectives: (1) to award the prize to the most accurate forecaster, and (2) to incentivize forecasters to report truthfully, so that forecasts are informative and forecasters need not spend any cognitive effort strategizing about reports. Proper scoring rules incentivize truthful reporting if all forecasters are paid according to their scores. However, incentives become distorted if only the best-scoring forecaster wins a prize, since forecasters can often increase their probability of having the highest score by reporting extreme beliefs. Even if forecasters do report truthfully, awarding the prize to the forecaster with highest score does not guarantee that high-accuracy forecasters are likely to win; in extreme cases, it can result in a perfect forecaster having zero probability of winning. In this paper, we introduce a truthful forecaster selection mechanism. We lower-bound the probability that our mechanism selects the most accurate forecaster, and give rates for how quickly this bound approaches 1 as the number of events grows. Our techniques can be generalized to the related problems of outputting a ranking over forecasters and hiring a forecaster with high accuracy on future events.


Learning User Preferences to Incentivize Exploration in the Sharing Economy

AAAI Conferences

We study platforms in the sharing economy and discuss the need for incentivizing users to explore options that otherwise would not be chosen. For instance, rental platforms such as Airbnb typically rely on customer reviews to provide users with relevant information about different options. Yet, often a large fraction of options does not have any reviews available. Such options are frequently neglected as viable choices, and in turn are unlikely to be evaluated, creating a vicious cycle. Platforms can engage users to deviate from their preferred choice by offering monetary incentives for choosing a different option instead. To efficiently learn the optimal incentives to offer, we consider structural information in user preferences and introduce a novel algorithm---Coordinated Online Learning (CoOL)---for learning with structural information modeled as convex constraints. We provide formal guarantees on the performance of our algorithm and test the viability of our approach in a user study with data of apartments on Airbnb. Our findings suggest that our approach is well-suited to learn appropriate incentives and increase exploration on the investigated platform.