Goto

Collaborating Authors

 Carnegie Mellon University


Robust Stackelberg Equilibria in Extensive-Form Games and Extension to Limited Lookahead

AAAI Conferences

Stackelberg equilibria have become increasingly important as a solution concept in computational game theory, largely inspired by practical problems such as security settings. In practice, however, there is typically uncertainty regarding the model about the opponent. This paper is, to our knowledge, the first to investigate Stackelberg equilibria under uncertainty in extensive-form games, one of the broadest classes of game. We introduce robust Stackelberg equilibria, where the uncertainty is about the opponentโ€™s payoffs, as well as ones where the opponent has limited lookahead and the uncertainty is about the opponentโ€™s node evaluation function. We develop a new mixed-integer program for the deterministic limited-lookahead setting. We then extend the program to the robust setting for Stackelberg equilibrium under unlimited and under limited lookahead by the opponent. We show that for the specific case of interval uncertainty about the opponentโ€™s payoffs (or about the opponentโ€™s node evaluations in the case of limited lookahead), robust Stackelberg equilibria can be computed with a mixed-integer program that is of the same asymptotic size as that for the deterministic setting.


Expressive Real-Time Intersection Scheduling

AAAI Conferences

We present Expressive Real-time Intersection Scheduling (ERIS), a schedule-driven control strategy for adaptive intersection control to reduce traffic congestion. ERIS maintains separate estimates for each lane approaching a traffic intersection allowing it to more accurately estimate the effects of scheduling decisions than previous schedule-driven approaches. We present a detailed description of the search space and A* search heuristic employed by ERIS to make scheduling decisions in real-time (every second). As a result of its increased expressiveness, ERIS outperforms a less expressive schedule-driven approach and a fully-actuated control method in a variety of simulated traffic environments.


SPOT Poachers in Action: Augmenting Conservation Drones With Automatic Detection in Near Real Time

AAAI Conferences

The unrelenting threat of poaching has led to increased development of new technologies to combat it. One such example is the use of long wave thermal infrared cameras mounted on unmanned aerial vehicles (UAVs or drones) to spot poachers at night and report them to park rangers before they are able to harm animals. However, monitoring the live video stream from these conservation UAVs all night is an arduous task. Therefore, we build SPOT (Systematic POacher deTector), a novel application that augments conservation drones with the ability to automatically detect poachers and animals in near real time. SPOT illustrates the feasibility of building upon state-of-the-art AI techniques, such as Faster RCNN, to address the challenges of automatically detecting animals and poachers in infrared images. This paper reports (i) the design and architecture of SPOT, (ii) a series of efforts towards more robust and faster processing to make SPOT usable in the field and provide detections in near real time, and (iii) evaluation of SPOT based on both historical videos and a real-world test run by the end users in the field. The promising results from the test in the field have led to a plan for larger-scale deployment in a national park in Botswana. While SPOT is developed for conservation drones, its design and novel techniques have wider application for automated detection from UAV videos.


Ranking Wily People Who Rank Each Other

AAAI Conferences

We study rank aggregation algorithms that take as input the opinions of players over their peers, represented as rankings, and output a social ordering of the players (which reflects, e.g., relative contribution to a project or fit for a job). To prevent strategic behavior, these algorithms must be impartial, i.e., players should not be able to influence their own position in the output ranking. We design several randomized algorithms that are impartial and closely emulate given (non-impartial) rank aggregation rules in a rigorous sense. Experimental results further support the efficacy and practicability of our algorithms.


Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction

AAAI Conferences

Conventional methods of 3D object generative modeling learn volumetric predictions using deep networks with 3D convolutional operations, which are direct analogies to classical 2D ones. However, these methods are computationally wasteful in attempt to predict 3D shapes, where information is rich only on the surfaces. In this paper, we propose a novel 3D generative modeling framework to efficiently generate object shapes in the form of dense point clouds. We use 2D convolutional operations to predict the 3D structure from multiple viewpoints and jointly apply geometric reasoning with 2D projection optimization. We introduce the pseudo-renderer, a differentiable module to approximate the true rendering operation, to synthesize novel depth maps for optimization. Experimental results for single-image 3D object reconstruction tasks show that we outperforms state-of-the-art methods in terms of shape similarity and prediction density.


Orthogonal Weight Normalization: Solution to Optimization Over Multiple Dependent Stiefel Manifolds in Deep Neural Networks

AAAI Conferences

Orthogonal matrix has shown advantages in training Recurrent Neural Networks (RNNs), but such matrix is limited to be square for the hidden-to-hidden transformation in RNNs. In this paper, we generalize such square orthogonal matrix to orthogonal rectangular matrix and formulating this problem in feed-forward Neural Networks (FNNs) as Optimization over Multiple Dependent Stiefel Manifolds (OMDSM). We show that the orthogonal rectangular matrix can stabilize the distribution of network activations and regularize FNNs. We propose a novel orthogonal weight normalization method to solve OMDSM. Particularly, it constructs orthogonal transformation over proxy parameters to ensure the weight matrix is orthogonal. To guarantee stability, we minimize the distortions between proxy parameters and canonical weights over all tractable orthogonal transformations. In addition, we design orthogonal linear module (OLM) to learn orthogonal filter banks in practice, which can be used as an alternative to standard linear module. Extensive experiments demonstrate that by simply substituting OLM for standard linear module without revising any experimental protocols, our method improves the performance of the state-of-the-art networks, including Inception and residual networks on CIFAR and ImageNet datasets.


Generalized Value Iteration Networks:Life Beyond Lattices

AAAI Conferences

In this paper, we introduce a generalized value iteration network (GVIN), which is an end-to-end neural network planning module. GVIN emulates the value iteration algorithm by using a novel graph convolution operator, which enables GVIN to learn and plan on irregular spatial graphs. We propose three novel differentiable kernels as graph convolution operators and show that the embedding-based kernel achieves the best performance. Furthermore, we present episodic Q-learning, an improvement upon traditional n-step Q-learning that stabilizes training for VIN and GVIN. Lastly, we evaluate GVIN on planning problems in 2D mazes, irregular graphs, and real-world street networks, showing that GVIN generalizes well for both arbitrary graphs and unseen graphs of larger scaleand outperforms a naive generalization of VIN (discretizing a spatial graph into a 2D image).


SPINE: SParse Interpretable Neural Embeddings

AAAI Conferences

Prediction without justification has limited utility. Much of the success of neural models can be attributed to their ability to learn rich, dense and expressive representations. While these representations capture the underlying complexity and latent trends in the data, they are far from being interpretable. We propose a novel variant of denoising k-sparse autoencoders that generates highly efficient and interpretable distributed word representations (word embeddings), beginning with existing word representations from state-of-the-art methods like GloVe and word2vec. Through large scale human evaluation, we report that our resulting word embedddings are much more interpretable than the original GloVe and word2vec embeddings. Moreover, our embeddings outperform existing popular word embeddings on a diverse suite of benchmark downstream tasks.


Gated-Attention Architectures for Task-Oriented Language Grounding

AAAI Conferences

To perform tasks specified by natural language instructions, autonomous agents need to extract semantically meaningful representations of language and map it to visual elements and actions in the environment. This problem is called task-oriented language grounding. We propose an end-to-end trainable neural architecture for task-oriented language grounding in 3D environments which assumes no prior linguistic or perceptual knowledge and requires only raw pixels from the environment and the natural language instruction as input. The proposed model combines the image and text representations using a Gated-Attention mechanism and learns a policy to execute the natural language instruction using standard reinforcement and imitation learning methods. We show the effectiveness of the proposed model on unseen instructions as well as unseen maps, both quantitatively and qualitatively. We also introduce a novel environment based on a 3D game engine to simulate the challenges of task-oriented language grounding over a rich set of instructions and environment states.


Learning Vector Autoregressive Models With Latent Processes

AAAI Conferences

We study the problem of learning the support of transition matrix between random processes in a Vector Autoregressive (VAR) model from samples when a subset of the processes are latent. It is well known that ignoring the effect of the latent processes may lead to very different estimates of the influences among observed processes, and we are concerned with identifying the influences among the observed processes, those between the latent ones, and those from the latent to the observed ones. We show that the support of transition matrix among the observed processes and lengths of all latent paths between any two observed processes can be identified successfully under some conditions on the VAR model. From the lengths of latent paths, we reconstruct the latent subgraph (representing the influences among the latent processes) with a minimum number of variables uniquely if its topology is a directed tree. Furthermore, we propose an algorithm that finds all possible minimal latent graphs under some conditions on the lengths of latent paths. Our results apply to both non-Gaussian and Gaussian cases, and experimental results on various synthetic and real-world datasets validate our theoretical results.