Örebro University
A Loosely-Coupled Approach for Multi-Robot Coordination, Motion Planning and Control
Pecora, Federico (Örebro University) | Andreasson, Henrik (Örebro University) | Mansouri, Masoumeh (Örebro University) | Petkov, Vilian ( Technical University of Varna )
Deploying fleets of autonomous robots in real-world applications requires addressing three problems: motion planning, coordination, and control. Application-specific features of the environment and robots often narrow down the possible motion planning and control methods that can be used. This paper proposes a lightweight coordination method that implements a high-level controller for a fleet of potentially heterogeneous robots. Very few assumptions are made on robot controllers, which are required only to be able to accept set point updates and to report their current state. The approach can be used with any motion planning method for computing kinematically-feasible paths. Coordination uses heuristics to update priorities while robots are in motion, and a simple model of robot dynamics to guarantee dynamic feasibility. The approach avoids a priori discretization of the environment or of robot paths, allowing robots to "follow each other" through critical sections. We validate the method formally and experimentally with different motion planners and robot controllers, in simulation and with real robots.
Configuration Planning with Temporal Constraints
Köckemann, Uwe (Örebro University) | Karlsson, Lars (Örebro University)
Configuration planning is a form of task planning that takes into consideration both causal and information dependencies in goal achievement. This type of planning is interesting, for instance, in smart home environments which contain various sensors and robots to provide services to the inhabitants. Requests for information, for instance from an activity recognition system, should cause the smart home to configure itself in such a way that all requested information will be provided when it is needed. This paper addresses temporal configuration planning in which information availability and goals are linked to temporal intervals which are subject to constrains. Our solutions are based on constraint-based planning which uses different types of constraints to model different types of knowledge. We propose and compare two approaches to configuration planning. The first one models information via conditions and effects of planning operators and essentially reduces configuration planning to constraint-based temporal planning. The second approach solves information dependencies separately from task planning and optimizes the cost of reaching individual information goals. We compare these approaches in terms of the time it takes to solve problems and the quality of the solutions they provide.
Context Recognition in Multiple Occupants Situations: Detecting the Number of Agents in a Smart Home Environment with Simple Sensors
Renoux, Jennifer (Örebro University) | Alirezaie, Marjan (Örebro University) | Karlsson, Lars (Örebro University) | Köckemann, Uwe (Örebro University) | Pecora, Federico (Örebro University) | Loutfi, Amy (Örebro University)
Context-recognition and activity recognition systems in multi-user environments such as smart homes, usually assume to know the number of occupants in the environment. However, being able to count the number of users in the environment is important in order to accurately recognize the activities of (groups of) agents. For smart environments without cameras, the problem of counting the number of agents is non-trivial. This is in part due to the difficulty of using a single non-vision based sensors to discriminate between one or several persons, and thus information from several sensors must be combined in order to reason about the presence of several agents. In this paper we address the problem of counting the number of agents in a topologically known environment using simple sensors that can indicate anonymous human presence. To do so, we connect an ontology to a probabilistic model (a Hidden Markov Model) in order to estimate the number of agents in each section of the environment. We evaluate our methods on a smart home setup where a number of motion and pressure sensors are distributed in various rooms of the home.
Grandpa Hates Robots - Interaction Constraints for Planning in Inhabited Environments
Koeckemann, Uwe (Örebro University) | Pecora, Federico (Örebro University) | Karlsson, Lars (Örebro University)
Consider a family whose home is equipped with several service robots. The actions planned for the robots must adhere to Interaction Constraints (ICs) relating them to human activities and preferences. These constraints must be sufficiently expressive to model both temporal and logical dependencies among robot actions and human behavior, and must accommodate incomplete information regarding human activities. In this paper we introduce an approach for automatically generating plans that are conformant wrt. given ICs and partially specified human activities. The approach allows to separate causal reasoning about actions from reasoning about ICs, and we illustrate the computational advantage this brings with experiments on a large-scale (semi-)realistic household domain with hundreds of human activities and several robots.
Integrated Motion Planning and Coordination for Industrial Vehicles
Cirillo, Marcello (Örebro University) | Pecora, Federico (Örebro University) | Andreasson, Henrik (Örebro University) | Uras, Tansel (University of Southern California) | Koenig, Sven (University of Southern California)
A growing interest in the industrial sector for autonomous ground vehicles has prompted significant investment in fleet management systems. Such systems need to accommodate on-line externally imposed temporal and spatial requirements, and to adhere to them even in the presence of contingencies. Moreover, a fleet management system should ensure correctness, i.e., refuse to commit to requirements that cannot be satisfied. We present an approach to obtain sets of alternative execution patterns (called trajectory envelopes) which provide these guarantees. The approach relies on a constraint-based representation shared among multiple solvers, each of which progressively refines trajectory envelopes following a least commitment principle.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.