Goto

Collaborating Authors

 Chinese Academy of Sciences (CAS)


Multiset Feature Learning for Highly Imbalanced Data Classification

AAAI Conferences

With the expansion of data, increasing imbalanced data has emerged. When the imbalance ratio of data is high, most existing imbalanced learning methods decline in classification performance. To address this problem, a few highly imbalanced learning methods have been presented. However, most of them are still sensitive to the high imbalance ratio. This work aims to provide an effective solution for the highly imbalanced data classification problem. We conduct highly imbalanced learning from the perspective of feature learning. We partition the majority class into multiple blocks with each being balanced to the minority class and combine each block with the minority class to construct a balanced sample set. Multiset feature learning (MFL) is performed on these sets to learn discriminant features. We thus propose an uncorrelated cost-sensitive multiset learning (UCML) approach. UCML provides a multiple sets construction strategy, incorporates the cost-sensitive factor into MFL, and designs a weighted uncorrelated constraint to remove the correlation among multiset features. Experiments on five highly imbalanced datasets indicate that: UCML outperforms state-of-the-art imbalanced learning methods.


Semi-Supervised Multi-View Correlation Feature Learning with Application to Webpage Classification

AAAI Conferences

Webpage classification has attracted a lot of research interest. Webpage data is often multi-view and high-dimensional, and the webpage classification application is usually semi-supervised. Due to these characteristics, using semi-supervised multi-view feature learning (SMFL) technique to deal with the webpage classification problem has recently received much attention. However, there still exists room for improvement for this kind of feature learning technique. How to effectively utilize the correlation information among multi-view of webpage data is an important research topic. Correlation analysis on multi-view data can facilitate extraction of the complementary information. In this paper, we propose a novel SMFL approach, named semi-supervised multi-view correlation feature learning (SMCFL), for webpage classification. SMCFL seeks for a discriminant common space by learning a multi-view shared transformation in a semi-supervised manner. In the discriminant space, the correlation between intra-class samples is maximized, and the correlation between inter-class samples and the global correlation among both labeled and unlabeled samples are minimized simultaneously. We transform the matrix-variable based nonconvex objective function of SMCFL into a convex quadratic programming problem with one real variable, and can achieve a global optimal solution. Experiments on widely used datasets demonstrate the effectiveness and efficiency of the proposed approach.