zhiyuan li
Learning in Games: Robustness of Fast Convergence
Dylan J. Foster, zhiyuan li, Thodoris Lykouris, Karthik Sridharan, Eva Tardos
We show that learning algorithms satisfying a low approximate regret property experience fast convergence to approximate optimality in a large class of repeated games. Our property, which simply requires that each learner has small regret compared to a (1 +)-multiplicative approximation to the best action in hindsight, is ubiquitous among learning algorithms; it is satisfied even by the vanilla Hedge forecaster. Our results improve upon recent work of Syrgkanis et al. [28] in a number of ways. We require only that players observe payoffs under other players' realized actions, as opposed to expected payoffs. We further show that convergence occurs with high probability, and show convergence under bandit feedback.
Solving Marginal MAP Problems with NP Oracles and Parity Constraints
Yexiang Xue, zhiyuan li, Stefano Ermon, Carla P. Gomes, Bart Selman
Arising from many applications at the intersection of decision-making and machine learning, Marginal Maximum A Posteriori (Marginal MAP) problems unify the two main classes of inference, namely maximization (optimization) and marginal inference (counting), and are believed to have higher complexity than both of them. We propose XOR_MMAP, a novel approach to solve the Marginal MAP problem, which represents the intractable counting subproblem with queries to NP oracles, subject to additional parity constraints. XOR_MMAP provides a constant factor approximation to the Marginal MAP problem, by encoding it as a single optimization in a polynomial size of the original problem. We evaluate our approach in several machine learning and decision-making applications, and show that our approach outperforms several state-of-the-art Marginal MAP solvers.