Goto

Collaborating Authors

 van der Poel, Constantijn


LLM-initialized Differentiable Causal Discovery

arXiv.org Machine Learning

The discovery of causal relationships between random variables is an important yet challenging problem that has applications across many scientific domains. Differentiable causal discovery (DCD) methods are effective in uncovering causal relationships from observational data; however, these approaches often suffer from limited interpretability and face challenges in incorporating domain-specific prior knowledge. In contrast, Large Language Models (LLMs)-based causal discovery approaches have recently been shown capable of providing useful priors for causal discovery but struggle with formal causal reasoning. In this paper, we propose LLM-DCD, which uses an LLM to initialize the optimization of the maximum likelihood objective function of DCD approaches, thereby incorporating strong priors into the discovery method. To achieve this initialization, we design our objective function to depend on an explicitly defined adjacency matrix of the causal graph as its only variational parameter. Directly optimizing the explicitly defined adjacency matrix provides a more interpretable approach to causal discovery. Additionally, we demonstrate higher accuracy on key benchmarking datasets of our approach compared to state-of-the-art alternatives, and provide empirical evidence that the quality of the initialization directly impacts the quality of the final output of our DCD approach. LLM-DCD opens up new opportunities for traditional causal discovery methods like DCD to benefit from future improvements in the causal reasoning capabilities of LLMs.


SandboxAQ's submission to MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval

arXiv.org Artificial Intelligence

This paper explores the problems of Question Answering (QA) and Named Entity Recognition (NER) in five diverse languages. We tested five Large Language Models with various prompting methods, including zero-shot, chain-of-thought reasoning, and translation techniques. Our results show that while some models consistently outperform others, their effectiveness varies significantly across tasks and languages. We saw that advanced prompting techniques generally improved QA performance but had mixed results for NER; and we observed that language difficulty patterns differed between tasks. Our findings highlight the need for task-specific approaches in multilingual NLP and suggest that current models may develop different linguistic competencies for different tasks.


Entangling Machine Learning with Quantum Tensor Networks

arXiv.org Artificial Intelligence

This paper examines the use of tensor networks, which can efficiently represent high-dimensional quantum states, in language modeling. It is a distillation and continuation of the work done in (van der Poel, 2023). To do so, we will abstract the problem down to modeling Motzkin spin chains, which exhibit long-range correlations reminiscent of those found in language. The Matrix Product State (MPS), also known as the tensor train, has a bond dimension which scales as the length of the sequence it models. To combat this, we use the factored core MPS, whose bond dimension scales sub-linearly. We find that the tensor models reach near perfect classifying ability, and maintain a stable level of performance as the number of valid training examples is decreased.