Goto

Collaborating Authors

 van Leeuwen, Matthijs


Diffusion Models for Tabular Data: Challenges, Current Progress, and Future Directions

arXiv.org Artificial Intelligence

In recent years, generative models have achieved remarkable performance across diverse applications, including image generation, text synthesis, audio creation, video generation, and data augmentation. Diffusion models have emerged as superior alternatives to Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) by addressing their limitations, such as training instability, mode collapse, and poor representation of multimodal distributions. This success has spurred widespread research interest. In the domain of tabular data, diffusion models have begun to showcase similar advantages over GANs and VAEs, achieving significant performance breakthroughs and demonstrating their potential for addressing unique challenges in tabular data modeling. However, while domains like images and time series have numerous surveys summarizing advancements in diffusion models, there remains a notable gap in the literature for tabular data. Despite the increasing interest in diffusion models for tabular data, there has been little effort to systematically review and summarize these developments. This lack of a dedicated survey limits a clear understanding of the challenges, progress, and future directions in this critical area. This survey addresses this gap by providing a comprehensive review of diffusion models for tabular data. Covering works from June 2015, when diffusion models emerged, to December 2024, we analyze nearly all relevant studies, with updates maintained in a \href{https://github.com/Diffusion-Model-Leiden/awesome-diffusion-models-for-tabular-data}{GitHub repository}. Assuming readers possess foundational knowledge of statistics and diffusion models, we employ mathematical formulations to deliver a rigorous and detailed review, aiming to promote developments in this emerging and exciting area.


Towards Automated Self-Supervised Learning for Truly Unsupervised Graph Anomaly Detection

arXiv.org Artificial Intelligence

Self-supervised learning (SSL) is an emerging paradigm that exploits supervisory signals generated from the data itself, and many recent studies have leveraged SSL to conduct graph anomaly detection. However, we empirically found that three important factors can substantially impact detection performance across datasets: 1) the specific SSL strategy employed; 2) the tuning of the strategy's hyperparameters; and 3) the allocation of combination weights when using multiple strategies. Most SSL-based graph anomaly detection methods circumvent these issues by arbitrarily or selectively (i.e., guided by label information) choosing SSL strategies, hyperparameter settings, and combination weights. While an arbitrary choice may lead to subpar performance, using label information in an unsupervised setting is label information leakage and leads to severe overestimation of a method's performance. Leakage has been criticized as "one of the top ten data mining mistakes", yet many recent studies on SSL-based graph anomaly detection have been using label information to select hyperparameters. To mitigate this issue, we propose to use an internal evaluation strategy (with theoretical analysis) to select hyperparameters in SSL for unsupervised anomaly detection. We perform extensive experiments using 10 recent SSL-based graph anomaly detection algorithms on various benchmark datasets, demonstrating both the prior issues with hyperparameter selection and the effectiveness of our proposed strategy.


Conditional Density Estimation with Histogram Trees

arXiv.org Artificial Intelligence

Conditional density estimation (CDE) goes beyond regression by modeling the full conditional distribution, providing a richer understanding of the data than just the conditional mean in regression. This makes CDE particularly useful in critical application domains. However, interpretable CDE methods are understudied. Current methods typically employ kernel-based approaches, using kernel functions directly for kernel density estimation or as basis functions in linear models. In contrast, despite their conceptual simplicity and visualization suitability, tree-based methods -- which are arguably more comprehensible -- have been largely overlooked for CDE tasks. Thus, we propose the Conditional Density Tree (CDTree), a fully non-parametric model consisting of a decision tree in which each leaf is formed by a histogram model. Specifically, we formalize the problem of learning a CDTree using the minimum description length (MDL) principle, which eliminates the need for tuning the hyperparameter for regularization. Next, we propose an iterative algorithm that, although greedily, searches the optimal histogram for every possible node split. Our experiments demonstrate that, in comparison to existing interpretable CDE methods, CDTrees are both more accurate (as measured by the log-loss) and more robust against irrelevant features. Further, our approach leads to smaller tree sizes than existing tree-based models, which benefits interpretability.


Explainable Graph Neural Networks Under Fire

arXiv.org Artificial Intelligence

Predictions made by graph neural networks (GNNs) usually lack interpretability due to their complex computational behavior and the abstract nature of graphs. In an attempt to tackle this, many GNN explanation methods have emerged. Their goal is to explain a model's predictions and thereby obtain trust when GNN models are deployed in decision critical applications. Most GNN explanation methods work in a post-hoc manner and provide explanations in the form of a small subset of important edges and/or nodes. In this paper we demonstrate that these explanations can unfortunately not be trusted, as common GNN explanation methods turn out to be highly susceptible to adversarial perturbations. That is, even small perturbations of the original graph structure that preserve the model's predictions may yield drastically different explanations. This calls into question the trustworthiness and practical utility of post-hoc explanation methods for GNNs. To be able to attack GNN explanation models, we devise a novel attack method dubbed \textit{GXAttack}, the first \textit{optimization-based} adversarial attack method for post-hoc GNN explanations under such settings. Due to the devastating effectiveness of our attack, we call for an adversarial evaluation of future GNN explainers to demonstrate their robustness.


Graph Neural Networks based Log Anomaly Detection and Explanation

arXiv.org Artificial Intelligence

Event logs are widely used to record the status of high-tech systems, making log anomaly detection important for monitoring those systems. Most existing log anomaly detection methods take a log event count matrix or log event sequences as input, exploiting quantitative and/or sequential relationships between log events to detect anomalies. Unfortunately, only considering quantitative or sequential relationships may result in low detection accuracy. To alleviate this problem, we propose a graph-based method for unsupervised log anomaly detection, dubbed Logs2Graphs, which first converts event logs into attributed, directed, and weighted graphs, and then leverages graph neural networks to perform graph-level anomaly detection. Specifically, we introduce One-Class Digraph Inception Convolutional Networks, abbreviated as OCDiGCN, a novel graph neural network model for detecting graph-level anomalies in a collection of attributed, directed, and weighted graphs. By coupling the graph representation and anomaly detection steps, OCDiGCN can learn a representation that is especially suited for anomaly detection, resulting in a high detection accuracy. Importantly, for each identified anomaly, we additionally provide a small subset of nodes that play a crucial role in OCDiGCN's prediction as explanations, which can offer valuable cues for subsequent root cause diagnosis. Experiments on five benchmark datasets show that Logs2Graphs performs at least on par with state-of-the-art log anomaly detection methods on simple datasets while largely outperforming state-of-the-art log anomaly detection methods on complicated datasets.


Probabilistic Truly Unordered Rule Sets

arXiv.org Artificial Intelligence

Rule set learning has recently been frequently revisited because of its interpretability. Existing methods have several shortcomings though. First, most existing methods impose orders among rules, either explicitly or implicitly, which makes the models less comprehensible. Second, due to the difficulty of handling conflicts caused by overlaps (i.e., instances covered by multiple rules), existing methods often do not consider probabilistic rules. Third, learning classification rules for multi-class target is understudied, as most existing methods focus on binary classification or multi-class classification via the ``one-versus-rest" approach. To address these shortcomings, we propose TURS, for Truly Unordered Rule Sets. To resolve conflicts caused by overlapping rules, we propose a novel model that exploits the probabilistic properties of our rule sets, with the intuition of only allowing rules to overlap if they have similar probabilistic outputs. We next formalize the problem of learning a TURS model based on the MDL principle and develop a carefully designed heuristic algorithm. We benchmark against a wide range of rule-based methods and demonstrate that our method learns rule sets that have lower model complexity and highly competitive predictive performance. In addition, we empirically show that rules in our model are empirically ``independent" and hence truly unordered.


Explainable Contextual Anomaly Detection using Quantile Regression Forests

arXiv.org Artificial Intelligence

Chandola et al (2009) subdivided anomalies into three types: point anomalies (an object is considered anomalous when compared against the rest of objects), contextual anomalies (an object is anomalous in a specific context), and collective anomalies (a collection of objects is anomalous with respect to the entire dataset). The analysis of anomalies has a wide range of applications, such as in network security (Ahmed et al, 2016a), bioinformatics (Spinosa and Carvalho, 2005), fraud detection (Ahmed et al, 2016b), and fault detection and isolation (Hwang et al, 2009). Anomaly analysis consists of two equally important tasks: anomaly detection and anomaly explanation. A wealth of'shallow' machine learning based methods, i.e., not based on deep learning, have been proposed to detect anomalies (Chandola et al, 2009). More recently, many deep learning based anomaly detection methods have also been developed (Pang et al, 2021). However, deep learning based anomaly detection methods are notoriously known as not being interpretable, in the sense that generally both the model itself is non-transparent and the resulting anomaly scores are challenging to interpret without the use of a post-hoc explainer.


A Survey on Explainable Anomaly Detection

arXiv.org Artificial Intelligence

In the past two decades, most research on anomaly detection has focused on improving the accuracy of the detection, while largely ignoring the explainability of the corresponding methods and thus leaving the explanation of outcomes to practitioners. As anomaly detection algorithms are increasingly used in safety-critical domains, providing explanations for the high-stakes decisions made in those domains has become an ethical and regulatory requirement. Therefore, this work provides a comprehensive and structured survey on state-of-the-art explainable anomaly detection techniques. We propose a taxonomy based on the main aspects that characterize each explainable anomaly detection technique, aiming to help practitioners and researchers find the explainable anomaly detection method that best suits their needs.


Feature Selection for Fault Detection and Prediction based on Event Log Analysis

arXiv.org Artificial Intelligence

Event logs are widely used for anomaly detection and prediction in complex systems. Existing log-based anomaly detection methods usually consist of four main steps: log collection, log parsing, feature extraction, and anomaly detection, wherein the feature extraction step extracts useful features for anomaly detection by counting log events. For a complex system, such as a lithography machine consisting of a large number of subsystems, its log may contain thousands of different events, resulting in abounding extracted features. However, when anomaly detection is performed at the subsystem level, analyzing all features becomes expensive and unnecessary. To mitigate this problem, we develop a feature selection method for log-based anomaly detection and prediction, largely improving the effectiveness and efficiency.


Robust subgroup discovery

arXiv.org Artificial Intelligence

We introduce the problem of robust subgroup discovery, i.e., finding a set of interpretable descriptions of subsets that 1) stand out with respect to one or more target attributes, 2) are statistically robust, and 3) non-redundant. Many attempts have been made to mine either locally robust subgroups or to tackle the pattern explosion, but we are the first to address both challenges at the same time from a global perspective. First, we formulate a broad model class of subgroup lists, i.e., ordered sets of subgroups, for univariate and multivariate targets that can consist of nominal or numeric variables. This novel model class allows us to formalize the problem of optimal robust subgroup discovery using the Minimum Description Length (MDL) principle, where we resort to optimal Normalized Maximum Likelihood and Bayesian encodings for nominal and numeric targets, respectively. Notably, we show that our problem definition is equal to mining the top-1 subgroup with an information-theoretic quality measure plus a penalty for complexity. Second, as finding optimal subgroup lists is NP-hard, we propose RSD, a greedy heuristic that finds good subgroup lists and guarantees that the most significant subgroup found according to the MDL criterion is added in each iteration, which is shown to be equivalent to a Bayesian one-sample proportions, multinomial, or t-test between the subgroup and dataset marginal target distributions plus a multiple hypothesis testing penalty. We empirically show on 54 datasets that RSD outperforms previous subgroup set discovery methods in terms of quality and subgroup list size.