Goto

Collaborating Authors

 van Harmelen, Frank


Semantic Web and Creative AI -- A Technical Report from ISWS 2023

arXiv.org Artificial Intelligence

The International Semantic Web Research School (ISWS) is a week-long intensive program designed to immerse participants in the field. This document reports a collaborative effort performed by ten teams of students, each guided by a senior researcher as their mentor, attending ISWS 2023. Each team provided a different perspective to the topic of creative AI, substantiated by a set of research questions as the main subject of their investigation. The 2023 edition of ISWS focuses on the intersection of Semantic Web technologies and Creative AI. ISWS 2023 explored various intersections between Semantic Web technologies and creative AI. A key area of focus was the potential of LLMs as support tools for knowledge engineering. Participants also delved into the multifaceted applications of LLMs, including legal aspects of creative content production, humans in the loop, decentralised approaches to multimodal generative AI models, nanopublications and AI for personal scientific knowledge graphs, commonsense knowledge in automatic story and narrative completion, generative AI for art critique, prompt engineering, automatic music composition, commonsense prototyping and conceptual blending, and elicitation of tacit knowledge. As Large Language Models and semantic technologies continue to evolve, new exciting prospects are emerging: a future where the boundaries between creative expression and factual knowledge become increasingly permeable and porous, leading to a world of knowledge that is both informative and inspiring.


Aligning Generalisation Between Humans and Machines

arXiv.org Artificial Intelligence

Recent advances in AI -- including generative approaches -- have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals. The responsible use of AI increasingly shows the need for human-AI teaming, necessitating effective interaction between humans and machines. A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise. In cognitive science, human generalisation commonly involves abstraction and concept learning. In contrast, AI generalisation encompasses out-of-domain generalisation in machine learning, rule-based reasoning in symbolic AI, and abstraction in neuro-symbolic AI. In this perspective paper, we combine insights from AI and cognitive science to identify key commonalities and differences across three dimensions: notions of generalisation, methods for generalisation, and evaluation of generalisation. We map the different conceptualisations of generalisation in AI and cognitive science along these three dimensions and consider their role in human-AI teaming. This results in interdisciplinary challenges across AI and cognitive science that must be tackled to provide a foundation for effective and cognitively supported alignment in human-AI teaming scenarios.


A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference

arXiv.org Machine Learning

We study the problem of combining neural networks with symbolic reasoning. Recently introduced frameworks for Probabilistic Neurosymbolic Learning (PNL), such as DeepProbLog, perform exponential-time exact inference, limiting the scalability of PNL solutions. We introduce Approximate Neurosymbolic Inference (A-NeSI): a new framework for PNL that uses neural networks for scalable approximate inference. A-NeSI 1) performs approximate inference in polynomial time without changing the semantics of probabilistic logics; 2) is trained using data generated by the background knowledge; 3) can generate symbolic explanations of predictions; and 4) can guarantee the satisfaction of logical constraints at test time, which is vital in safety-critical applications. Our experiments show that A-NeSI is the first end-to-end method to solve three neurosymbolic tasks with exponential combinatorial scaling. Finally, our experiments show that A-NeSI achieves explainability and safety without a penalty in performance.


Towards Semantically Enriched Embeddings for Knowledge Graph Completion

arXiv.org Artificial Intelligence

Embedding based Knowledge Graph (KG) Completion has gained much attention over the past few years. Most of the current algorithms consider a KG as a multidirectional labeled graph and lack the ability to capture the semantics underlying the schematic information. In a separate development, a vast amount of information has been captured within the Large Language Models (LLMs) which has revolutionized the field of Artificial Intelligence. KGs could benefit from these LLMs and vice versa. This vision paper discusses the existing algorithms for KG completion based on the variations for generating KG embeddings. It starts with discussing various KG completion algorithms such as transductive and inductive link prediction and entity type prediction algorithms. It then moves on to the algorithms utilizing type information within the KGs, LLMs, and finally to algorithms capturing the semantics represented in different description logic axioms. We conclude the paper with a critical reflection on the current state of work in the community and give recommendations for future directions.


Modular Design Patterns for Hybrid Learning and Reasoning Systems: a taxonomy, patterns and use cases

arXiv.org Artificial Intelligence

The unification of statistical (data-driven) and symbolic (knowledge-driven) methods is widely recognised as one of the key challenges of modern AI. Recent years have seen large number of publications on such hybrid neuro-symbolic AI systems. That rapidly growing literature is highly diverse and mostly empirical, and is lacking a unifying view of the large variety of these hybrid systems. In this paper we analyse a large body of recent literature and we propose a set of modular design patterns for such hybrid, neuro-symbolic systems. We are able to describe the architecture of a very large number of hybrid systems by composing only a small set of elementary patterns as building blocks. The main contributions of this paper are: 1) a taxonomically organised vocabulary to describe both processes and data structures used in hybrid systems; 2) a set of 15+ design patterns for hybrid AI systems, organised in a set of elementary patterns and a set of compositional patterns; 3) an application of these design patterns in two realistic use-cases for hybrid AI systems. Our patterns reveal similarities between systems that were not recognised until now. Finally, our design patterns extend and refine Kautz' earlier attempt at categorising neuro-symbolic architectures.


Analyzing Differentiable Fuzzy Implications

arXiv.org Artificial Intelligence

Combining symbolic and neural approaches has gained considerable attention in the AI community, as it is often argued that the strengths and weaknesses of these approaches are complementary. One such trend in the literature are weakly supervised learning techniques that employ operators from fuzzy logics. In particular, they use prior background knowledge described in such logics to help the training of a neural network from unlabeled and noisy data. By interpreting logical symbols using neural networks (or grounding them), this background knowledge can be added to regular loss functions, hence making reasoning a part of learning. In this paper, we investigate how implications from the fuzzy logic literature behave in a differentiable setting. In such a setting, we analyze the differences between the formal properties of these fuzzy implications. It turns out that various fuzzy implications, including some of the most well-known, are highly unsuitable for use in a differentiable learning setting. A further finding shows a strong imbalance between gradients driven by the antecedent and the consequent of the implication. Furthermore, we introduce a new family of fuzzy implications (called sigmoidal implications) to tackle this phenomenon. Finally, we empirically show that it is possible to use Differentiable Fuzzy Logics for semi-supervised learning, and show that sigmoidal implications outperform other choices of fuzzy implications.


Semi-Supervised Learning using Differentiable Reasoning

arXiv.org Artificial Intelligence

We introduce Differentiable Reasoning (DR), a novel semi-supervised learning technique which uses relational background knowledge to benefit from unlabeled data. We apply it to the Semantic Image Interpretation (SII) task and show that background knowledge provides significant improvement. We find that there is a strong but interesting imbalance between the contributions of updates from Modus Ponens (MP) and its logical equivalent Modus Tollens (MT) to the learning process, suggesting that our approach is very sensitive to a phenomenon called the Raven Paradox. We propose a solution to overcome this situation.


Reinforcement Learning for Personalized Dialogue Management

arXiv.org Artificial Intelligence

Language systems have been of great interest to the research community and have recently reached the mass market through various assistant platforms on the web. Reinforcement Learning methods that optimize dialogue policies have seen successes in past years and have recently been extended into methods that personalize the dialogue, e.g. take the personal context of users into account. These works, however, are limited to personalization to a single user with whom they require multiple interactions and do not generalize the usage of context across users. This work introduces a problem where a generalized usage of context is relevant and proposes two Reinforcement Learning (RL)-based approaches to this problem. The first approach uses a single learner and extends the traditional POMDP formulation of dialogue state with features that describe the user context. The second approach segments users by context and then employs a learner per context. We compare these approaches in a benchmark of existing non-RL and RL-based methods in three established and one novel application domain of financial product recommendation. We compare the influence of context and training experiences on performance and find that learning approaches generally outperform a handcrafted gold standard.


The sameAs Problem: A Survey on Identity Management in the Web of Data

arXiv.org Artificial Intelligence

In a decentralised knowledge representation system such as the W eb of Data, it is common and indeed desirable for different knowledge graphs to overlap. Whenever multiple names are used to denote the same thing, owl:sameAs statements are needed in order to link the data and foster reuse. Whilst the deductive value of such identity statements can be extremely useful in enhancing various knowledge-based systems, incorrect use of identity can have wide-ranging effects in a global knowledge space like the W eb of Data. With several works already proven that identity in the W eb is broken, this survey investigates the current state of this "sameAs problem". An open discussion highlights the main weaknesses suffered by solutions in the literature, and draws open challenges to be faced in the future.


The Linked Open Data cloud is more abstract, flatter and less linked than you may think!

arXiv.org Artificial Intelligence

This paper presents an empirical study aiming at understanding the modeling style and the overall semantic structure of Linked Open Data. We observe how classes, properties and individuals are used in practice. We also investigate how hierarchies of concepts are structured, and how much they are linked. In addition to discussing the results, this paper contributes (i) a conceptual framework, including a set of metrics, which generalises over the observable constructs; (ii) an open source implementation that facilitates its application to other Linked Data knowledge graphs.