van Baar, Jeroen
Cross-domain Imitation from Observations
Raychaudhuri, Dripta S., Paul, Sujoy, van Baar, Jeroen, Roy-Chowdhury, Amit K.
Imitation learning seeks to circumvent the difficulty in designing proper reward functions for training agents by utilizing expert behavior. With environments modeled as Markov Decision Processes (MDP), most of the existing imitation algorithms are contingent on the availability of expert demonstrations in the same MDP as the one in which a new imitation policy is to be learned. In this paper, we study the problem of how to imitate tasks when there exist discrepancies between the expert and agent MDP. These discrepancies across domains could include differing dynamics, viewpoint, or morphology; we present a novel framework to learn correspondences across such domains. Importantly, in contrast to prior works, we use unpaired and unaligned trajectories containing only states in the expert domain, to learn this correspondence. We utilize a cycle-consistency constraint on both the state space and a domain agnostic latent space to do this. In addition, we enforce consistency on the temporal position of states via a normalized position estimator function, to align the trajectories across the two domains. Once this correspondence is found, we can directly transfer the demonstrations on one domain to the other and use it for imitation. Experiments across a wide variety of challenging domains demonstrate the efficacy of our approach.
Towards Human-Level Learning of Complex Physical Puzzles
Ota, Kei, Jha, Devesh K., Romeres, Diego, van Baar, Jeroen, Smith, Kevin A., Semitsu, Takayuki, Oiki, Tomoaki, Sullivan, Alan, Nikovski, Daniel, Tenenbaum, Joshua B.
Humans quickly solve tasks in novel systems with complex dynamics, without requiring much interaction. While deep reinforcement learning algorithms have achieved tremendous success in many complex tasks, these algorithms need a large number of samples to learn meaningful policies. In this paper, we present a task for navigating a marble to the center of a circular maze. While this system is very intuitive and easy for humans to solve, it can be very difficult and inefficient for standard reinforcement learning algorithms to learn meaningful policies. We present a model that learns to move a marble in the complex environment within minutes of interacting with the real system. Learning consists of initializing a physics engine with parameters estimated using data from the real system. The error in the physics engine is then corrected using Gaussian process regression, which is used to model the residual between real observations and physics engine simulations. The physics engine equipped with the residual model is then used to control the marble in the maze environment using a model-predictive feedback over a receding horizon. We contrast the learning behavior against the time taken by humans to solve the problem to show comparable behavior. To the best of our knowledge, this is the first time that a hybrid model consisting of a full physics engine along with a statistical function approximator has been used to control a complex physical system in real-time using nonlinear model-predictive control (NMPC). Codes for the simulation environment can be downloaded here https://www.merl.com/research/license/CME . A video describing our method could be found here https://youtu.be/xaxNCXBovpc .
Trajectory-based Learning for Ball-in-Maze Games
Paul, Sujoy, van Baar, Jeroen
Deep Reinforcement Learning has shown tremendous success in solving several games and tasks in robotics. However, unlike humans, it generally requires a lot of training instances. Trajectories imitating to solve the task at hand can help to increase sample-efficiency of deep RL methods. In this paper, we present a simple approach to use such trajectories, applied to the challenging Ball-in-Maze Games, recently introduced in the literature. We show that in spite of not using human-generated trajectories and just using the simulator as a model to generate a limited number of trajectories, we can get a speed-up of about 2-3x in the learning process. We also discuss some challenges we observed while using trajectory-based learning for very sparse reward functions.
Sim-to-Real Transfer Learning using Robustified Controllers in Robotic Tasks involving Complex Dynamics
van Baar, Jeroen, Sullivan, Alan, Cordorel, Radu, Jha, Devesh, Romeres, Diego, Nikovski, Daniel
Learning robot tasks or controllers using deep reinforcement learning has been proven effective in simulations. Learning in simulation has several advantages. For example, one can fully control the simulated environment, including halting motions while performing computations. Another advantage when robots are involved, is that the amount of time a robot is occupied learning a task---rather than being productive---can be reduced by transferring the learned task to the real robot. Transfer learning requires some amount of fine-tuning on the real robot. For tasks which involve complex (non-linear) dynamics, the fine-tuning itself may take a substantial amount of time. In order to reduce the amount of fine-tuning we propose to learn robustified controllers in simulation. Robustified controllers are learned by exploiting the ability to change simulation parameters (both appearance and dynamics) for successive training episodes. An additional benefit for this approach is that it alleviates the precise determination of physics parameters for the simulator, which is a non-trivial task. We demonstrate our proposed approach on a real setup in which a robot aims to solve a maze puzzle, which involves complex dynamics due to static friction and potentially large accelerations. We show that the amount of fine-tuning in transfer learning for a robustified controller is substantially reduced compared to a non-robustified controller.