Goto

Collaborating Authors

 flajolet, arthur


Online Learning with a Hint

Neural Information Processing Systems

We study a variant of online linear optimization where the player receives a hint about the loss function at the beginning of each round. The hint is given in the form of a vector that is weakly correlated with the loss vector on that round. We show that the player can benefit from such a hint if the set of feasible actions is sufficiently round. Specifically, if the set is strongly convex, the hint can be used to guarantee a regret of O(log(T)), and if the set is q-uniformly convex for q\in(2,3), the hint can be used to guarantee a regret of o(sqrt{T}). In contrast, we establish Omega(sqrt{T}) lower bounds on regret when the set of feasible actions is a polyhedron.


Real-Time Bidding with Side Information

Neural Information Processing Systems

We consider the problem of repeated bidding in online advertising auctions when some side information (e.g. browser cookies) is available ahead of submitting a bid in the form of a $d$-dimensional vector. The goal for the advertiser is to maximize the total utility (e.g. the total number of clicks) derived from displaying ads given that a limited budget $B$ is allocated for a given time horizon $T$. Optimizing the bids is modeled as a contextual Multi-Armed Bandit (MAB) problem with a knapsack constraint and a continuum of arms. We develop UCB-type algorithms that combine two streams of literature: the confidence-set approach to linear contextual MABs and the probabilistic bisection search method for stochastic root-finding. Under mild assumptions on the underlying unknown distribution, we establish distribution-independent regret bounds of order $\tilde{O}(d \cdot \sqrt{T})$ when either $B = \infty$ or when $B$ scales linearly with $T$.