de Lamare, R. C.
Study of Robust Direction Finding Based on Joint Sparse Representation
Li, Y., Xiao, W., Zhao, L., Huang, Z., Li, Q., Li, L., de Lamare, R. C.
Standard Direction of Arrival (DOA) estimation methods are typically derived based on the Gaussian noise assumption, making them highly sensitive to outliers. Therefore, in the presence of impulsive noise, the performance of these methods may significantly deteriorate. In this paper, we model impulsive noise as Gaussian noise mixed with sparse outliers. By exploiting their statistical differences, we propose a novel DOA estimation method based on sparse signal recovery (SSR). Furthermore, to address the issue of grid mismatch, we utilize an alternating optimization approach that relies on the estimated outlier matrix and the on-grid DOA estimates to obtain the off-grid DOA estimates. Simulation results demonstrate that the proposed method exhibits robustness against large outliers.
Study of Enhanced MISC-Based Sparse Arrays with High uDOFs and Low Mutual Coupling
Sheng, X., Lu, D., Li, Y., de Lamare, R. C.
In this letter, inspired by the maximum inter-element spacing (IES) constraint (MISC) criterion, an enhanced MISC-based (EMISC) sparse array (SA) with high uniform degrees-of-freedom (uDOFs) and low mutual-coupling (MC) is proposed, analyzed and discussed in detail. For the EMISC SA, an IES set is first determined by the maximum IES and number of elements. Then, the EMISC SA is composed of seven uniform linear sub-arrays (ULSAs) derived from an IES set. An analysis of the uDOFs and weight function shows that, the proposed EMISC SA outperforms the IMISC SA in terms of uDOF and MC. Simulation results show a significant advantage of the EMISC SA over other existing SAs.
Efficient Covariance Matrix Reconstruction with Iterative Spatial Spectrum Sampling
Mohammadzadeh, S., Nascimento, V. H., de Lamare, R. C., Kukrer, O.
This work presents a cost-effective technique for designing robust adaptive beamforming algorithms based on efficient covariance matrix reconstruction with iterative spatial power spectrum (CMR-ISPS). The proposed CMR-ISPS approach reconstructs the interference-plus-noise covariance (INC) matrix based on a simplified maximum entropy power spectral density function that can be used to shape the directional response of the beamformer. Firstly, we estimate the directions of arrival (DoAs) of the interfering sources with the available snapshots. We then develop an algorithm to reconstruct the INC matrix using a weighted sum of outer products of steering vectors whose coefficients can be estimated in the vicinity of the DoAs of the interferences which lie in a small angular sector. We also devise a cost-effective adaptive algorithm based on conjugate gradient techniques to update the beamforming weights and a method to obtain estimates of the signal of interest (SOI) steering vector from the spatial power spectrum. The proposed CMR-ISPS beamformer can suppress interferers close to the direction of the SOI by producing notches in the directional response of the array with sufficient depths. Simulation results are provided to confirm the validity of the proposed method and make a comparison to existing approaches
Study of Robust Adaptive Beamforming with Covariance Matrix Reconstruction Based on Power Spectral Estimation and Uncertainty Region
Mohammadzadeh, S., Nascimento, V. H., de Lamare, R. C., Kukrer, O.
In this work, a simple and effective robust adaptive beamforming technique is proposed for uniform linear arrays, which is based on the power spectral estimation and uncertainty region (PSEUR) of the interference plus noise (IPN) components. In particular, two algorithms are presented to find the angular sector of interference in every snapshot based on the adopted spatial uncertainty region of the interference direction. Moreover, a power spectrum is introduced based on the estimation of the power of interference and noise components, which allows the development of a robust approach to IPN covariance matrix reconstruction. The proposed method has two main advantages. First, an angular region that contains the interference direction is updated based on the statistics of the array data. Secondly, the proposed IPN-PSEUR method avoids estimating the power spectrum of the whole range of possible directions of the interference sector. Simulation results show that the performance of the proposed IPN-PSEUR beamformer is almost always close to the optimal value across a wide range of signal-to-noise ratios.
Compressed Sensing with Probability-based Prior Information
Jiang, Q., Li, S., Zhu, Z., Bai, H., He, X., de Lamare, R. C.
This paper deals with the design of a sensing matrix along with a sparse recovery algorithm by utilizing the probability-based prior information for compressed sensing system. With the knowledge of the probability for each atom of the dictionary being used, a diagonal weighted matrix is obtained and then the sensing matrix is designed by minimizing a weighted function such that the Gram of the equivalent dictionary is as close to the Gram of dictionary as possible. An analytical solution for the corresponding sensing matrix is derived which leads to low computational complexity. We also exploit this prior information through the sparse recovery stage and propose a probability-driven orthogonal matching pursuit algorithm that improves the accuracy of the recovery. Simulations for synthetic data and application scenarios of surveillance video are carried out to compare the performance of the proposed methods with some existing algorithms. The results reveal that the proposed CS system outperforms existing CS systems.
Robust DCD-Based Recursive Adaptive Algorithms
Yu, Y., Lu, L., Zheng, Z., Wang, W., Zakharov, Y., de Lamare, R. C.
The dichotomous coordinate descent (DCD) algorithm has been successfully used for significant reduction in the complexity of recursive least squares (RLS) algorithms. In this work, we generalize the application of the DCD algorithm to RLS adaptive filtering in impulsive noise scenarios and derive a unified update formula. By employing different robust strategies against impulsive noise, we develop novel computationally efficient DCD-based robust recursive algorithms. Furthermore, to equip the proposed algorithms with the ability to track abrupt changes in unknown systems, a simple variable forgetting factor mechanism is also developed. Simulation results for channel identification scenarios in impulsive noise demonstrate the effectiveness of the proposed algorithms.
Study of Robust Distributed Diffusion RLS Algorithms with Side Information for Adaptive Networks
Yu, Y., Zhao, H., de Lamare, R. C., Zakharov, Y., Lu, L.
This work develops robust diffusion recursive least squares algorithms to mitigate the performance degradation often experienced in networks of agents in the presence of impulsive noise. The first algorithm minimizes an exponentially weighted least-squares cost function subject to a time-dependent constraint on the squared norm of the intermediate update at each node. A recursive strategy for computing the constraint is proposed using side information from the neighboring nodes to further improve the robustness. We also analyze the mean-square convergence behavior of the proposed algorithm. The second proposed algorithm is a modification of the first one based on the dichotomous coordinate descent iterations. It has a performance similar to that of the former, however its complexity is significantly lower especially when input regressors of agents have a shift structure and it is well suited to practical implementation. Simulations show the superiority of the proposed algorithms over previously reported techniques in various impulsive noise scenarios.
Study of Sparsity-Aware Subband Adaptive Filtering Algorithms with Adjustable Penalties
Yu, Y., Zhao, H., de Lamare, R. C.
We propose two sparsity-aware normalized subband adaptive filter (NSAF) algorithms by using the gradient descent method to minimize a combination of the original NSAF cost function and the l1-norm penalty function on the filter coefficients. This l1-norm penalty exploits the sparsity of a system in the coefficients update formulation, thus improving the performance when identifying sparse systems. Compared with prior work, the proposed algorithms have lower computational complexity with comparable performance. We study and devise statistical models for these sparsity-aware NSAF algorithms in the mean square sense involving their transient and steady -state behaviors. This study relies on the vectorization argument and the paraunitary assumption imposed on the analysis filter banks, and thus does not restrict the input signal to being Gaussian or having another distribution. In addition, we propose to adjust adaptively the intensity parameter of the sparsity attraction term. Finally, simulation results in sparse system identification demonstrate the effectiveness of our theoretical results.
Study of Set-Membership Adaptive Kernel Algorithms
Flores, A., de Lamare, R. C.
In the last decade, a considerable research effort has been devoted to developing adaptive algorithms based on kernel functions. One of the main features of these algorithms is that they form a family of universal approximation techniques, solving problems with nonlinearities elegantly. In this paper, we present data-selective adaptive kernel normalized least-mean square (KNLMS) algorithms that can increase their learning rate and reduce their computational complexity. In fact, these methods deal with kernel expansions, creating a growing structure also known as the dictionary, whose size depends on the number of observations and their innovation. The algorithms described herein use an adaptive step-size to accelerate the learning and can offer an excellent tradeoff between convergence speed and steady state, which allows them to solve nonlinear filtering and estimation problems with a large number of parameters without requiring a large computational cost. The data-selective update scheme also limits the number of operations performed and the size of the dictionary created by the kernel expansion, saving computational resources and dealing with one of the major problems of kernel adaptive algorithms. A statistical analysis is carried out along with a computational complexity analysis of the proposed algorithms. Simulations show that the proposed KNLMS algorithms outperform existing algorithms in examples of nonlinear system identification and prediction of a time series originating from a nonlinear difference equation.
Multi-Step Knowledge-Aided Iterative ESPRIT for Direction Finding
Pinto, S. F. B., de Lamare, R. C.
In this work, we propose a subspace-based algorithm for DOA estimation which iteratively reduces the disturbance factors of the estimated data covariance matrix and incorporates prior knowledge which is gradually obtained on line. An analysis of the MSE of the reshaped data covariance matrix is carried out along with comparisons between computational complexities of the proposed and existing algorithms. Simulations focusing on closely-spaced sources, where they are uncorrelated and correlated, illustrate the improvements achieved.